The main goal of this Myelonna SPORE program is to develop novel targeted therapies to more effectively treat patients with multiple myeloma (MM). Clinically relevant animal models are crucial for examining the in vivo efficacy of novel agents. The dedicated personnel and facilities of the Animal Models Core (Core D) provide the program with clinically relevant animal models and expertise in animal studies essential to achieving the aims ofthe Projects. Core personnel work closely with SPORE investigators to plan animal studies and to develop optimal and clinically relevant mouse models of myeloma. During the past 5 years, the Department of Lymphoma and Myeloma and M. D. Anderson Cancer Center have provided excellent conditions in terms of access to primary myeloma samples, myeloma tissue bank, interaction between clinical and translational research programs, and animal facilities for providing unique, clinically relevant samples to establish myeloma SCID and SCID-hu mouse models, which allow reproducibly engraftment of established human myeloma cell lines or primary myeloma cells freshly isolated from patients with MM, respectively. Establishment of myeloma in SCID-hu mice induces typical human MM manifestations including disease heterogeneity commonly seen in the clinic. The Animal Models Core is well suited to provide expertise and mouse models for the SPORE given that the Animal Models Core Personnel, animal facilities, and tissue banks are all located within the South Campus Research Buildings of our institution where our laboratories are concentrated. This provides a level of integration for the Core that will maximize uniformity and use of available animal models and patients'materials by SPORE investigators.

Agency
National Institute of Health (NIH)
Institute
National Cancer Institute (NCI)
Type
Specialized Center (P50)
Project #
5P50CA142509-04
Application #
8543584
Study Section
Special Emphasis Panel (ZCA1-GRB-I)
Project Start
Project End
Budget Start
2013-09-01
Budget End
2014-08-31
Support Year
4
Fiscal Year
2013
Total Cost
$65,851
Indirect Cost
Name
University of Texas MD Anderson Cancer Center
Department
Type
DUNS #
800772139
City
Houston
State
TX
Country
United States
Zip Code
77030
Purushothaman, Anurag; Bandari, Shyam K; Chandrashekar, Darshan S et al. (2017) Chondroitin sulfate proteoglycan serglycin influences protein cargo loading and functions of tumor-derived exosomes. Oncotarget 8:73723-73732
Holkova, Beata; Yazbeck, Victor; Kmieciak, Maciej et al. (2017) A phase 1 study of bortezomib and romidepsin in patients with chronic lymphocytic leukemia/small lymphocytic lymphoma, indolent B-cell lymphoma, peripheral T-cell lymphoma, or cutaneous T-cell lymphoma. Leuk Lymphoma 58:1349-1357
Carballo-Zarate, Adrian A; Medeiros, L Jeffrey; Fang, Lianghua et al. (2017) Additional-structural-chromosomal aberrations are associated with inferior clinical outcome in patients with hyperdiploid multiple myeloma: a single-institution experience. Mod Pathol 30:843-853
Xu-Monette, Zijun Y; Zhang, Mingzhi; Li, Jianyong et al. (2017) PD-1/PD-L1 Blockade: Have We Found the Key to Unleash the Antitumor Immune Response? Front Immunol 8:1597
Wan, Wen; Pei, Xin-Yan; Grant, Steven et al. (2017) Nonlinear response surface in the study of interaction analysis of three combination drugs. Biom J 59:9-24
Yu, Li; Tu, Meifeng; Cortes, Jorge et al. (2017) Clinical and pathological characteristics of HIV- and HHV-8-negative Castleman disease. Blood 129:1658-1668
Nguyen, Tri; Parker, Rebecca; Hawkins, Elisa et al. (2017) Synergistic interactions between PLK1 and HDAC inhibitors in non-Hodgkin's lymphoma cells occur in vitro and in vivo and proceed through multiple mechanisms. Oncotarget 8:31478-31493
(2017) Correction: Integration of Novel Agents into the Care of Patients with Multiple Myeloma. Clin Cancer Res 23:2605
Lee, Hans C; Wang, Hua; Baladandayuthapani, Veerabhadran et al. (2017) RNA Polymerase I Inhibition with CX-5461 as a Novel Therapeutic Strategy to Target MYC in Multiple Myeloma. Br J Haematol 177:80-94
Manasanch, Elisabet E; Orlowski, Robert Z (2017) Proteasome inhibitors in cancer therapy. Nat Rev Clin Oncol 14:417-433

Showing the most recent 10 out of 190 publications