To support the CIRNA projects and to provide a resource to the broader scientific community, the Biospecimen and Genotyping Core (BGC) will: (1) standardize the collection, processing, and storage of biospecimens from animal and human projects in the CIRNA;(2) implement a prospective system for tracking samples in the biospecimen repository and integrate these data with the current repository of -3,000 human specimens;and (3) for an exploratory genetic analysis, perform genotyping for polymorphisms hypothesized to contribute to abstinence symptoms or medication effects in Projects 3 and 4 (human studies). The BGC will also work with the Data Management and Biostatistics Core to integrate genotypic and phenotypic data, and to implement the CIRNA data sharing plan. The centralized sample processing and tracking strategy for all projects will increase efficiency and reduce the cost of undertaking the individual projects. All of these processes will occur within the context of extensive quality control procedures to ensure that the data provided to CIRNA investigators and to the scientific community are of the highest quality and accuracy.

National Institute of Health (NIH)
National Cancer Institute (NCI)
Specialized Center (P50)
Project #
Application #
Study Section
Special Emphasis Panel (ZDA1-RXL-E)
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
University of Pennsylvania
United States
Zip Code
Cole, Robert D; Poole, Rachel L; Guzman, Dawn M et al. (2015) Contributions of ?2 subunit-containing nAChRs to chronic nicotine-induced alterations in cognitive flexibility in mice. Psychopharmacology (Berl) 232:1207-17
Jain, Raka; Jhanjee, Sonali; Jain, Veena et al. (2014) A double-blind placebo-controlled randomized trial of varenicline for smokeless tobacco dependence in India. Nicotine Tob Res 16:50-7
Falcone, Mary; Wileyto, E Paul; Ruparel, Kosha et al. (2014) Age-related differences in working memory deficits during nicotine withdrawal. Addict Biol 19:907-17
Turner, J R; Ray, R; Lee, B et al. (2014) Evidence from mouse and man for a role of neuregulin 3 in nicotine dependence. Mol Psychiatry 19:801-10
Ashare, Rebecca L; Falcone, Mary; Lerman, Caryn (2014) Cognitive function during nicotine withdrawal: Implications for nicotine dependence treatment. Neuropharmacology 76 Pt B:581-91
Hussmann, G Patrick; DeDominicis, Kristen E; Turner, Jill R et al. (2014) Chronic sazetidine-A maintains anxiolytic effects and slower weight gain following chronic nicotine without maintaining increased density of nicotinic receptors in rodent brain. J Neurochem 129:721-31
Yohn, Nicole L; Turner, Jill R; Blendy, Julie A (2014) Activation of ?4?2*/?6?2* nicotinic receptors alleviates anxiety during nicotine withdrawal without upregulating nicotinic receptors. J Pharmacol Exp Ther 349:348-54
Ashare, Rebecca L; Schmidt, Heath D (2014) Optimizing treatments for nicotine dependence by increasing cognitive performance during withdrawal. Expert Opin Drug Discov 9:579-94
Goelz, Patricia M; Audrain-McGovern, Janet E; Hitsman, Brian et al. (2014) The association between changes in alternative reinforcers and short-term smoking cessation. Drug Alcohol Depend 138:67-74
Poole, Rachel L; Connor, David A; Gould, Thomas J (2014) Donepezil reverses nicotine withdrawal-induced deficits in contextual fear conditioning in C57BL/6J mice. Behav Neurosci 128:588-93

Showing the most recent 10 out of 69 publications