The phosphatidylinositol 3 kinase (PI3K) signaling axis is aberrantly activated in the majority of adult high-grade gliomas. Activation in glioblastoma (GBM) occurs via one of four mechanisms: 1) Loss of function mutations in the PTEN tumor suppressor;2) Amplification/gain of function mutations in the receptors for EGF or PDGF;3) Activating mutations in the PIK3CA gene that encodes p110?, a catalytic subunit of PI3K, or;4) mutations in the gene PIK3R1 that encodes one ofthe PI3K regulatory subunits, p85a. A number of PI3K inhibitors are in the early stages of clinical trials. One of these, BKM120, is being developed by Novartis and has been shown to pass through the blood brain barrier, making it an excellent candidate for glioblastoma therapy. Project 2 will be centered on a trial of BKM in patients with recurrent glioblastoma. The broad goal of Project 2 is to use the data and clinical materials from patients on our BKM120 trial - in concert with genetically defined mouse models - to address important unresolved questions involving PI3 kinase inhibitors as glioblastoma therapeutics. In addition to the key data on the impact of genetic modifiers on response to BKM120 (if any) coming from the human trial, cell culture and animal studies will address optimization of, and the potential benefits from, combination therapies using BKM120 in concert with standard of care, as well as a number of rationally targeted therapies. Finally, great promise has been seen with inhibitors targeting a single catalytic isoform of PI3K. To prepare clinical testing of this new class of inhibitors, preclinical experiments will be carried out determining the relative importance of the individual PI3K isoforms in disease driven by Pten loss.

Public Health Relevance

Current treatments for glioblastoma are far from satisfactory. The studies proposed here will test the efficacy a blood brain barrier penetrant PI3 kinase inhibitor, a new potential therapeutic that targets a kinase class frequently activated in this disease. In addition preclinical studies are proposed to facilitate treatment with this class of inhibitors. The end goal is to improve the standard of therapy for this disease.

Agency
National Institute of Health (NIH)
Institute
National Cancer Institute (NCI)
Type
Specialized Center (P50)
Project #
5P50CA165962-02
Application #
8932952
Study Section
Special Emphasis Panel (ZCA1-RPRB-7 (M1))
Program Officer
Arnold, Julia T
Project Start
2013-09-19
Project End
2018-07-31
Budget Start
2014-08-01
Budget End
2015-07-31
Support Year
2
Fiscal Year
2014
Total Cost
$490,407
Indirect Cost
$119,891
Name
Massachusetts General Hospital
Department
Type
DUNS #
073130411
City
Boston
State
MA
Country
United States
Zip Code
02199
Zhao, Yingchao; Liu, Pinan; Zhang, Na et al. (2018) Targeting the cMET pathway augments radiation response without adverse effect on hearing in NF2 schwannoma models. Proc Natl Acad Sci U S A 115:E2077-E2084
Bian, X; Gao, J; Luo, F et al. (2018) PTEN deficiency sensitizes endometrioid endometrial cancer to compound PARP-PI3K inhibition but not PARP inhibition as monotherapy. Oncogene 37:341-351
McBrayer, Samuel K; Mayers, Jared R; DiNatale, Gabriel J et al. (2018) Transaminase Inhibition by 2-Hydroxyglutarate Impairs Glutamate Biosynthesis and Redox Homeostasis in Glioma. Cell 175:101-116.e25
McKenney, Anna Sophia; Lau, Allison N; Somasundara, Amritha Varshini Hanasoge et al. (2018) JAK2/IDH-mutant-driven myeloproliferative neoplasm is sensitive to combined targeted inhibition. J Clin Invest 128:789-804
Shankar, Ganesh M; Kirtane, Ameya R; Miller, Julie J et al. (2018) Genotype-targeted local therapy of glioma. Proc Natl Acad Sci U S A 115:E8388-E8394
Arvanitis, Costas D; Askoxylakis, Vasileios; Guo, Yutong et al. (2018) Mechanisms of enhanced drug delivery in brain metastases with focused ultrasound-induced blood-tumor barrier disruption. Proc Natl Acad Sci U S A 115:E8717-E8726
Li, Ben B; Qian, Changli; Roberts, Thomas M et al. (2018) Targeted Profiling of RNA Translation. Curr Protoc Mol Biol :e71
Nowosielski, Martha; Wen, Patrick Y (2018) Imaging Criteria in Neuro-oncology. Semin Neurol 38:24-31
Li, Ben B; Qian, Changli; Gameiro, Paulo A et al. (2018) Targeted profiling of RNA translation reveals mTOR-4EBP1/2-independent translation regulation of mRNAs encoding ribosomal proteins. Proc Natl Acad Sci U S A 115:E9325-E9332
Khandekar, Melin J; Jain, Rakesh (2018) Smooth sailing for immunotherapy for unresectable stage III non-small cell lung cancer: the PACIFIC study. Transl Cancer Res 7:S16-S20

Showing the most recent 10 out of 84 publications