Project 3 builds upon extensive basic, translational and ongoing clinical work within DF/HCC, and addresses a clinically pressing issue: the need for more effective treatment strategies for sporadic triple negative breast cancer.
It aims to shift current paradigms by the development of approaches that will sensitize BRCA-proficient triple negative breast cancer cells to PARP inhibition. Two highly innovative therapeutic strategies will be used, both involving newly appreciated aspects of homologous recombination.
In Aim 1, we will focus on the development of a CDK inhibitor/PARP inhibitor combination utilizing dinaciclib and veliparib. The drug combination will be studied in triple negative breast cancer cell lines and orthotopic primary tumor xenograft models. Ultimately, the combination will be translated to a Phase 2 clinical trial that will explore efficacy and pharmacodynamic endpoints.
Aim 2 takes advantage of another observation regarding previously unappreciated aspects of homologous recombination indicating that proteasome inhibition leads to a defect in homologous recombination, and thus sensitivity to PARP inhibition. We will proceed similarly through work in triple negative breast cancer cell lines, patient-derived orthotopic xenograft models and early phase clinical trial, focusing on the bortezomib/veliparib combination. For the clinical translation of the bortezomib/veliparib combination, the recommended phase 2 doses of the combination will be established in a UO1-supported phase 1 clinical trial. Following completion of the dose escalation, the SPORE will support enrollment of a triple negative breast cancer cohort in order to confirm safety in this population and to perform correlative studies.

Public Health Relevance

Our goals are to test novel therapeutic approaches directed against BRCA-proficient triple negative breast cancer, including targeted combinations that can induce sensitivity to DNA damaging agents. Altogether, the proposed project is well timed with respect to the current key challenges in breast cancer and we expect to make a significant impact in the future management of patients diagnosed with triple negative breast cancer.

National Institute of Health (NIH)
National Cancer Institute (NCI)
Specialized Center (P50)
Project #
Application #
Study Section
Special Emphasis Panel (ZCA1-RPRB-0)
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
Dana-Farber Cancer Institute
United States
Zip Code
Spangle, Jennifer M; Dreijerink, Koen M; Groner, Anna C et al. (2016) PI3K/AKT Signaling Regulates H3K4 Methylation in Breast Cancer. Cell Rep 15:2692-704
Montaser-Kouhsari, Laleh; Knoblauch, Nicholas W; Oh, Eun-Yeong et al. (2016) Image-guided Coring for Large-scale Studies in Molecular Pathology. Appl Immunohistochem Mol Morphol 24:431-5
Morganella, Sandro; Alexandrov, Ludmil B; Glodzik, Dominik et al. (2016) The topography of mutational processes in breast cancer genomes. Nat Commun 7:11383
Cheng, H; Liu, P; Ohlson, C et al. (2016) PIK3CA(H1047R)- and Her2-initiated mammary tumors escape PI3K dependency by compensatory activation of MEK-ERK signaling. Oncogene 35:2961-70
Choi, Young Eun; Meghani, Khyati; Brault, Marie-Eve et al. (2016) Platinum and PARP Inhibitor Resistance Due to Overexpression of MicroRNA-622 in BRCA1-Mutant Ovarian Cancer. Cell Rep 14:429-39
Ni, Jing; Ramkissoon, Shakti H; Xie, Shaozhen et al. (2016) Combination inhibition of PI3K and mTORC1 yields durable remissions in mice bearing orthotopic patient-derived xenografts of HER2-positive breast cancer brain metastases. Nat Med 22:723-6
Wang, Q; Liu, P; Spangle, J M et al. (2016) PI3K-p110α mediates resistance to HER2-targeted therapy in HER2+, PTEN-deficient breast cancers. Oncogene 35:3607-12
Nik-Zainal, Serena; Davies, Helen; Staaf, Johan et al. (2016) Landscape of somatic mutations in 560 breast cancer whole-genome sequences. Nature 534:47-54
Smid, Marcel; Rodríguez-González, F Germán; Sieuwerts, Anieta M et al. (2016) Breast cancer genome and transcriptome integration implicates specific mutational signatures with immune cell infiltration. Nat Commun 7:12910
Johnson, Shawn F; Cruz, Cristina; Greifenberg, Ann Katrin et al. (2016) CDK12 Inhibition Reverses De Novo and Acquired PARP Inhibitor Resistance in BRCA Wild-Type and Mutated Models of Triple-Negative Breast Cancer. Cell Rep 17:2367-2381

Showing the most recent 10 out of 38 publications