The goal of this Core is to provide high quality clinical data and subject samples for use in the scientific projects of the SPORE. To provide these resources. Core A will utilize and expand upon clinical and biospecimen resources that already exist at each institution. For projects in which additional or different samples/data are required, prospective collection of these samples and their corresponding clinical information will be supported through Core A.

Public Health Relevance

Core A is essential to ensure that all research activities in this SPORE utilizing human samples are provided with sound clinical and pathological information, that the data are efficiently and accurately managed, and that distribution of samples and data occurs in a reliable and timely manner.

Agency
National Institute of Health (NIH)
Institute
National Cancer Institute (NCI)
Type
Specialized Center (P50)
Project #
5P50CA168505-02
Application #
8764989
Study Section
Special Emphasis Panel (ZCA1-RPRB-7)
Project Start
Project End
Budget Start
2014-08-01
Budget End
2015-07-31
Support Year
2
Fiscal Year
2014
Total Cost
$277,153
Indirect Cost
$74,236
Name
Ohio State University
Department
Type
DUNS #
832127323
City
Columbus
State
OH
Country
United States
Zip Code
43210
Liyanarachchi, Sandya; Li, Wei; Yan, Pearlly et al. (2016) Genome-Wide Expression Screening Discloses Long Noncoding RNAs Involved in Thyroid Carcinogenesis. J Clin Endocrinol Metab 101:4005-4013
Hollingsworth, Brynn; Senter, Leigha; Zhang, Xiaoli et al. (2016) Risk Factors of (131)I-Induced Salivary Gland Damage in Thyroid Cancer Patients. J Clin Endocrinol Metab 101:4085-4093
Justiniano, Steven E; McElroy, Joseph P; Yu, Lianbo et al. (2016) Genetic variants in thyroid cancer distant metastases. Endocr Relat Cancer 23:L33-6
Nabhan, Fadi; Ringel, Matthew D (2016) Thyroid nodules and cancer management guidelines: comparisons and controversies. Endocr Relat Cancer :
Shirley, Lawrence A; McCarty, Samantha; Yang, Ming-Chen et al. (2016) Integrin-linked kinase affects signaling pathways and migration in thyroid cancer cells and is a potential therapeutic target. Surgery 159:163-70
Danysh, Brian P; Rieger, Erin Y; Sinha, Deepankar K et al. (2016) Long-term vemurafenib treatment drives inhibitor resistance through a spontaneous KRAS G12D mutation in a BRAF V600E papillary thyroid carcinoma model. Oncotarget 7:30907-23
Nagy, Rebecca; Ringel, Matthew D (2015) Genetic predisposition for nonmedullary thyroid cancer. Horm Cancer 6:13-20
Tomsic, Jerneja; He, Huiling; de la Chapelle, Albert (2015) HABP2 Mutation and Nonmedullary Thyroid Cancer. N Engl J Med 373:2086
He, Huiling; Li, Wei; Liyanarachchi, Sandya et al. (2015) Multiple functional variants in long-range enhancer elements contribute to the risk of SNP rs965513 in thyroid cancer. Proc Natl Acad Sci U S A 112:6128-33
He, Huiling; Li, Wei; Liyanarachchi, Sandya et al. (2015) Genetic predisposition to papillary thyroid carcinoma: involvement of FOXE1, TSHR, and a novel lincRNA gene, PTCSC2. J Clin Endocrinol Metab 100:E164-72

Showing the most recent 10 out of 18 publications