Oncogenic activation of MAPK in thyroid cells leads to loss of expression of genes required for thyroid hormone biosynthesis, including the sodium iodide transporter (NIS) and thyroid peroxidase (TPO). Tumors with BRAF nnutation have lower expression of NIS, which likely explains why BRAF mutant PTCs are often resistant to RAI therapy. We developed mouse models of thyroid cancer driven by BRAF-V600E, and these tumors also lose the ability to concentrate radioiodine, which is restored by treatment with RAF or MEK inhibitors. Moreover, the MEK inhibitor AZD6244 reactivated iodide uptake at metastatic sites in patients with RAI-refractory thyroid cancer, allowing many of them to be treated with 131-iodine, with remarkable clinical responses. These beneficial results were seen although MEK inhibitors do not fully block MAPK signaling in thyroid cancer cells, because they relieve a feedback leading to upregulation of receptor tyrosine kinases, in particular HERS, which confers resistance to therapy. In addition, activation of TGFp signaling, which is a common feature of advanced forms of thyroid cancer, may be further induced in response to MAPK inhibitors, leading to further downregulation of NIS. The goals of this project are to determine how to optimize inhibition of MAPK signaling to further enhance radioactive iodine uptake and response to RAI therapy in thyroid cancer. This will be done through the following specific aims: 1) Determine the effect of MEK inhibitors on the kinetics of iodine-124 incorporation in patients with metastatic RAI refractory thyroid cancer, and test the hypothesis that this is due to increased expression of genes required for incorporation of inorganic iodide into proteins. 2) Determine if a combination of inhibitors that target MAPK and HER3 signaling is more effective in restoring RAI incorporation than the single agents in mouse models of BRAF- induced thyroid cancers. 3) Determine if pharmacological inhibitors of TGFp signaling enhance iodide uptake alone or in combination with inhibitors of the RAF-MEK-ERK pathway.4) Evaluate the response to 1311 therapy of murine thyroid cancers pretreated with the combination therapy/s showing the best effects on 1241 dosimetry.

Public Health Relevance

We aim to improve the effectiveness of radioiodine (RAI) therapy in patients with RAI-refractory metastatic thyroid cancer, based on new insights on the role of MAPK signaling in downregulating iodine incorporation into cancer cells. We will build on recent experimental and clinical breakthroughs by our research group that show that in a large fraction of patients RAI-refractoriness can be reversed.by blocking ERK pathway activity.

National Institute of Health (NIH)
National Cancer Institute (NCI)
Specialized Center (P50)
Project #
Application #
Study Section
Special Emphasis Panel (ZCA1-RPRB-0 (M1))
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
Sloan-Kettering Institute for Cancer Research
New York
United States
Zip Code
Ibrahimpasic, Tihana; Xu, Bin; Landa, IƱigo et al. (2017) Genomic Alterations in Fatal Forms of Non-Anaplastic Thyroid Cancer: Identification of MED12 and RBM10 as Novel Thyroid Cancer Genes Associated with Tumor Virulence. Clin Cancer Res 23:5970-5980
Orlacchio, Arturo; Ranieri, Michela; Brave, Martina et al. (2017) SGK1 Is a Critical Component of an AKT-Independent Pathway Essential for PI3K-Mediated Tumor Development and Maintenance. Cancer Res 77:6914-6926
Montero-Conde, Cristina; Leandro-Garcia, Luis J; Chen, Xu et al. (2017) Transposon mutagenesis identifies chromatin modifiers cooperating with Ras in thyroid tumorigenesis and detects ATXN7 as a cancer gene. Proc Natl Acad Sci U S A 114:E4951-E4960
Park, Spencer; Shevlin, Enda; Vedvyas, Yogindra et al. (2017) Micromolar affinity CAR T cells to ICAM-1 achieves rapid tumor elimination while avoiding systemic toxicity. Sci Rep 7:14366
Min, Irene M; Shevlin, Enda; Vedvyas, Yogindra et al. (2017) CAR T Therapy Targeting ICAM-1 Eliminates Advanced Human Thyroid Tumors. Clin Cancer Res 23:7569-7583
Sherman, Eric J; Dunn, Lara A; Ho, Alan L et al. (2017) Phase 2 study evaluating the combination of sorafenib and temsirolimus in the treatment of radioactive iodine-refractory thyroid cancer. Cancer 123:4114-4121
Di Cristofano, Antonio (2017) SGK1: The Dark Side of PI3K Signaling. Curr Top Dev Biol 123:49-71
Anelli, Viviana; Villefranc, Jacques A; Chhangawala, Sagar et al. (2017) Oncogenic BRAF disrupts thyroid morphogenesis and function via twist expression. Elife 6:
Brito, Juan P; Ito, Yasuhiro; Miyauchi, Akira et al. (2016) A Clinical Framework to Facilitate Risk Stratification When Considering an Active Surveillance Alternative to Immediate Biopsy and Surgery in Papillary Microcarcinoma. Thyroid 26:144-9
Mandal, Rajarsi; Chan, Timothy A (2016) Personalized Oncology Meets Immunology: The Path toward Precision Immunotherapy. Cancer Discov 6:703-13

Showing the most recent 10 out of 29 publications