The purpose of the Career Development Program (CDP) is to identify and train outstanding investigators who are committed to pursuing a career in translational skin cancer research. The program will primarily assist junior faculty in their career development, but more established investigators interested in refocusing their research efforts in melanoma/skin cancer may also be considered. Women and underrepresented minorities will be strongly encouraged to participate. The team of distinguished clinicians, educators and researchers will ensure implementation of the specific aims of this program which are as follows:
Specific aim 1 : To identify and select translational research investigators who will develop independent research careers in melanoma and/or skin cancer.
Specific aim 2 : To provide Career Development Awardees with formal training and mentorship from both the clinical and laboratory perspectives in order to establish successful independent careers in translational research. We require that award recipients be active in SPORE functions, use the SPORE Core resource, and provide formal written progress reports. Within the context of the CDP, we have established high standards and expectations of the research mentors and a structured, formalized program of mentorship for the CDP awardees. The program measures success by resulting publications, resulting funding, and career advancement and ultimately independent careers in translational research. We have an outstanding talent pool and an effective training and mentorship program which will result in an exceptional group of skin cancer researchers.

National Institute of Health (NIH)
National Cancer Institute (NCI)
Specialized Center (P50)
Project #
Application #
Study Section
Special Emphasis Panel (ZCA1-RPRB-7 (J1))
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
Wistar Institute
United States
Zip Code
Kaur, Amanpreet; Webster, Marie R; Marchbank, Katie et al. (2016) sFRP2 in the aged microenvironment drives melanoma metastasis and therapy resistance. Nature 532:250-4
Lu, Hezhe; Liu, Shujing; Zhang, Gao et al. (2016) Oncogenic BRAF-Mediated Melanoma Cell Invasion. Cell Rep 15:2012-24
Amaravadi, Ravi; Kimmelman, Alec C; White, Eileen (2016) Recent insights into the function of autophagy in cancer. Genes Dev 30:1913-30
Fatkhutdinov, Nail; Sproesser, Katrin; Krepler, Clemens et al. (2016) Targeting RRM2 and Mutant BRAF Is a Novel Combinatorial Strategy for Melanoma. Mol Cancer Res 14:767-75
Kumar, Vinit; Cheng, Pingyan; Condamine, Thomas et al. (2016) CD45 Phosphatase Inhibits STAT3 Transcription Factor Activity in Myeloid Cells and Promotes Tumor-Associated Macrophage Differentiation. Immunity 44:303-15
Shannan, Batool; Chen, Quan; Watters, Andrea et al. (2016) Enhancing the evaluation of PI3K inhibitors through 3D melanoma models. Pigment Cell Melanoma Res 29:317-28
Gimotty, Phyllis A; Shore, Ronald; Lozon, Nancy L et al. (2016) Miscoding of Melanoma Thickness in SEER: Research and Clinical Implications. J Invest Dermatol 136:2168-2172
Natale, Christopher A; Duperret, Elizabeth K; Zhang, Junqian et al. (2016) Sex steroids regulate skin pigmentation through nonclassical membrane-bound receptors. Elife 5:
Krepler, Clemens; Xiao, Min; Sproesser, Katrin et al. (2016) Personalized Preclinical Trials in BRAF Inhibitor-Resistant Patient-Derived Xenograft Models Identify Second-Line Combination Therapies. Clin Cancer Res 22:1592-602
Wang, Joshua X; Fukunaga-Kalabis, Mizuho; Herlyn, Meenhard (2016) Crosstalk in skin: melanocytes, keratinocytes, stem cells, and melanoma. J Cell Commun Signal 10:191-196

Showing the most recent 10 out of 35 publications