The purpose of the Career Development Program (CDP) is to identify and train outstanding investigators who are committed to pursuing a career in translational skin cancer research. The program will primarily assist junior faculty in their career development, but more established investigators interested in refocusing their research efforts in melanoma/skin cancer may also be considered. Women and underrepresented minorities will be strongly encouraged to participate. The team of distinguished clinicians, educators and researchers will ensure implementation of the specific aims of this program which are as follows:
Specific aim 1 : To identify and select translational research investigators who will develop independent research careers in melanoma and/or skin cancer.
Specific aim 2 : To provide Career Development Awardees with formal training and mentorship from both the clinical and laboratory perspectives in order to establish successful independent careers in translational research. We require that award recipients be active in SPORE functions, use the SPORE Core resource, and provide formal written progress reports. Within the context of the CDP, we have established high standards and expectations of the research mentors and a structured, formalized program of mentorship for the CDP awardees. The program measures success by resulting publications, resulting funding, and career advancement and ultimately independent careers in translational research. We have an outstanding talent pool and an effective training and mentorship program which will result in an exceptional group of skin cancer researchers.

Agency
National Institute of Health (NIH)
Institute
National Cancer Institute (NCI)
Type
Specialized Center (P50)
Project #
1P50CA174523-01A1
Application #
8664628
Study Section
Special Emphasis Panel (ZCA1-RPRB-7 (J1))
Project Start
Project End
Budget Start
2014-09-15
Budget End
2015-03-31
Support Year
1
Fiscal Year
2014
Total Cost
$73,219
Indirect Cost
$33,641
Name
Wistar Institute
Department
Type
DUNS #
075524595
City
Philadelphia
State
PA
Country
United States
Zip Code
19104
Duperret, Elizabeth K; Trautz, Aspen; Stoltz, Regina et al. (2018) Synthetic DNA-Encoded Monoclonal Antibody Delivery of Anti-CTLA-4 Antibodies Induces Tumor Shrinkage In Vivo. Cancer Res 78:6363-6370
Kugel 3rd, Curtis H; Douglass, Stephen M; Webster, Marie R et al. (2018) Age Correlates with Response to Anti-PD1, Reflecting Age-Related Differences in Intratumoral Effector and Regulatory T-Cell Populations. Clin Cancer Res 24:5347-5356
Nicastri, Michael C; Rebecca, Vito W; Amaravadi, Ravi K et al. (2018) Dimeric quinacrines as chemical tools to identify PPT1, a new regulator of autophagy in cancer cells. Mol Cell Oncol 5:e1395504
Duperret, Elizabeth K; Wise, Megan C; Trautz, Aspen et al. (2018) Synergy of Immune Checkpoint Blockade with a Novel Synthetic Consensus DNA Vaccine Targeting TERT. Mol Ther 26:435-445
Yuan, Jiao; Hu, Zhongyi; Mahal, Brandon A et al. (2018) Integrated Analysis of Genetic Ancestry and Genomic Alterations across Cancers. Cancer Cell 34:549-560.e9
Onorati, Angelique V; Dyczynski, Matheus; Ojha, Rani et al. (2018) Targeting autophagy in cancer. Cancer 124:3307-3318
Perego, M; Maurer, M; Wang, J X et al. (2018) A slow-cycling subpopulation of melanoma cells with highly invasive properties. Oncogene 37:302-312
Echevarría-Vargas, Ileabett M; Reyes-Uribe, Patricia I; Guterres, Adam N et al. (2018) Co-targeting BET and MEK as salvage therapy for MAPK and checkpoint inhibitor-resistant melanoma. EMBO Mol Med 10:
Duperret, Elizabeth K; Trautz, Aspen; Ammons, Dylan et al. (2018) Alteration of the Tumor Stroma Using a Consensus DNA Vaccine Targeting Fibroblast Activation Protein (FAP) Synergizes with Antitumor Vaccine Therapy in Mice. Clin Cancer Res 24:1190-1201
Hammerlindl, Heinz; Ravindran Menon, Dinoop; Hammerlindl, Sabrina et al. (2018) Acetylsalicylic Acid Governs the Effect of Sorafenib in RAS-Mutant Cancers. Clin Cancer Res 24:1090-1102

Showing the most recent 10 out of 89 publications