Steroid receptor coacfivator-3/amplified in breast cancer-1 (SRC-3/AIB1) is frequently overexpressed in breast carcinomas and can promote cell growth and resistance to endocrine therapies. In breast carcinomas overexpressing SRC-3, especially when in combination with activated HER2 signaling, the selective ER modulator (SERM) tamoxifen functions as an ER agonist. ER+/HER2+ tumors have a very poor response to tamoxifen treatment if SRC-3 is also overexpressed. Experimental targeting of SRC-3 can both a) augment the anti-estrogenic and anti-proliferative activity of tamoxifen in hormone-naive breast cancer cell lines, and b) restore the anti-estrogenic and anti-proliferative activity of tamoxifen in refractory breast cancer cell lines. Therefore, targeting SRC-3 expression and/or function is expected to enhance the activity of first-line conventional therapy and restore sensitivity in treatment-refractory breast cancer. Unfortunately, up to this point, SRC-3 has been considered """"""""undruggable"""""""" because it lacks a natural ligand-binding site that can be inhibited by small molecule compounds and protein:protein interacfions are difficult to disrupt. Importanfiy, the stability and activity of the SRC-3 protein are strongly regulated via its post-translational modificafion (PTM) by upstream kinase signaling networks, including protein kinase C (PKC). PKC family members can phosphorylate and protect SRC-3 from proteasome-mediated degradation. Given the critical role of SRC-3 in breast cancer and the lack of FDA-approved SRC-3 targeting agents, this proposal represents an innovafive hypothesis-driven approach, based on key basic research and robust preclinical evidence, to establish PKC SMls as first-in-class inhibitors of SRC-3 expression and function and as targeted therapies for use in combination with conventional agents for ER+ breast cancer. Preliminary studies demonstrate that PKC inhibitors (including agents that have been well-tolerated in clinical trials in other diseases) can, at clinically achievable and tolerated concentrafions, decrease SRC-3 protein expression, exert anticancer activity in SRC-3-overexpressing cell lines, enhance the anticancer activity of endocrine therapy in sensifive cells lines, and restore sensitivity to endocrine therapy in resistant breast cancer cell lines and xenografts.

Public Health Relevance

National Institute of Health (NIH)
National Cancer Institute (NCI)
Specialized Center (P50)
Project #
Application #
Study Section
Special Emphasis Panel (ZCA1-RPRB-C (M1))
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
Baylor College of Medicine
United States
Zip Code
Yu, L; Liang, Y; Cao, X et al. (2016) Identification of MYST3 as a novel epigenetic activator of ERα frequently amplified in breast cancer. Oncogene :
Malorni, Luca; Giuliano, Mario; Migliaccio, Ilenia et al. (2016) Blockade of AP-1 Potentiates Endocrine Therapy and Overcomes Resistance. Mol Cancer Res 14:470-81
Fu, Xiaoyong; Jeselsohn, Rinath; Pereira, Resel et al. (2016) FOXA1 overexpression mediates endocrine resistance by altering the ER transcriptome and IL-8 expression in ER-positive breast cancer. Proc Natl Acad Sci U S A 113:E6600-E6609
Eedunuri, Vijay Kumar; Rajapakshe, Kimal; Fiskus, Warren et al. (2015) miR-137 Targets p160 Steroid Receptor Coactivators SRC1, SRC2, and SRC3 and Inhibits Cell Proliferation. Mol Endocrinol 29:1170-83
Nardone, Agostina; De Angelis, Carmine; Trivedi, Meghana V et al. (2015) The changing role of ER in endocrine resistance. Breast 24 Suppl 2:S60-6
Giuliano, Mario; Hu, Huizhong; Wang, Yen-Chao et al. (2015) Upregulation of ER Signaling as an Adaptive Mechanism of Cell Survival in HER2-Positive Breast Tumors Treated with Anti-HER2 Therapy. Clin Cancer Res 21:3995-4003
Shi, Aiping; Dong, Jie; Hilsenbeck, Susan et al. (2015) The Status of STAT3 and STAT5 in Human Breast Atypical Ductal Hyperplasia. PLoS One 10:e0132214
Dowst, Heidi; Pew, Benjamin; Watkins, Chris et al. (2015) Acquire: an open-source comprehensive cancer biobanking system. Bioinformatics 31:1655-62
Sine, Jessica; Urban, Cordula; Thayer, Derek et al. (2015) Photo activation of HPPH encapsulated in ""Pocket"" liposomes triggers multiple drug release and tumor cell killing in mouse breast cancer xenografts. Int J Nanomedicine 10:125-45
Sinha, Vidya C; Qin, Lan; Li, Yi (2015) A p53/ARF-dependent anticancer barrier activates senescence and blocks tumorigenesis without impacting apoptosis. Mol Cancer Res 13:231-8

Showing the most recent 10 out of 12 publications