Currently, metastatic castration-resistant prostate cancer (CRPC) is invariably and unfortunately a lethal disease. The vast majority of CRPC is dependent upon and driven by androgen receptor (AR) signaling. While recent advances have resulted in the development of second generation therapeutics targeting the androgen signaling axis (e.g. enzalutamide and abiraterone), the responses to these new agents are often not durable. Thus, there is a clear and urgent need to develop completely new therapeutic approaches directed against the AR axis. Recently, our team identified a novel strategy for targeting the AR signaling axis via inhibition of bromodomain containing 4 (BRD4), a conserved member of the bromodomain and extraterminal (BET) family of transcriptional co-activators (In Revision at Nature). We discovered that AR physically interacts with BRD4, and that treatment with the BET-bromodomain inhibitor JQl disrupts the AR-BRD4 interaction as well as AR recruitment to target gene loci. Compared to the direct AR antagonist enzalutamide, BET bromodomain inhibitors are much more effective in inhibition of AR-mediated gene transcription, including induction of AR targets such as TMPRSS2:ERG and PSA. Significantly, JQ1 was also more effective than enzalutamide in inhibiting the growth of CRPC xenografts. Based upon our findings, we hypothesize that BET bromodomain inhibition is a promising approach for targeting the AR axis and for treating advanced prostate cancer. Our goal in this SPORE project is to develop a potent BET-bromodomain small-molecule inhibitor (BET inhibitor) with optimized in vivo properties for the treatment of advanced prostate cancer through the following specific aims:
Aim 1 : Develop a highly potent and selective BET inhibitor with optimized in vivo properties Aim 2: Interrogate the AR-BRD4 signaling axis with novel BET inhibitors.
Aim 3 : Establish the efficacy of BET bromodomain inhibitors using in vivo and ex vivo tumor models, and develop biomarkers of response. Upon successful completion of the Aims, we expect to nominate promising candidate(s) that could be developed further for clinical use to treat metastatic CRPG. The ultimate goal of this project is introduce BET bromodomain inhibitors as a novel therapy for CRPC based on a unique understanding of its mechanism of action.

Public Health Relevance

We showed that AR physically interacts with BET proteins, and that treatment with preclinical BET inhibitors disrupts this interaction as well as the ability of AR to turn on its target genes. In preclinical experiments, BET inhibition is more effective than conventional anti-androgen therapies in blocking prostate tumor growth. Based on these findings, we seek to further develop BET inhibition as a strategy for treating CRPC patients.

National Institute of Health (NIH)
National Cancer Institute (NCI)
Specialized Center (P50)
Project #
Application #
Study Section
Special Emphasis Panel (ZCA1-RPRB-7 (M1))
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
University of Michigan Ann Arbor
Ann Arbor
United States
Zip Code
Udager, Aaron M; DeMarzo, Angelo M; Shi, Yang et al. (2016) Concurrent nuclear ERG and MYC protein overexpression defines a subset of locally advanced prostate cancer: Potential opportunities for synergistic targeted therapeutics. Prostate 76:845-53
Kaushik, Akash K; Shojaie, Ali; Panzitt, Katrin et al. (2016) Inhibition of the hexosamine biosynthetic pathway promotes castration-resistant prostate cancer. Nat Commun 7:11612
Feng, Felix Y; Kothari, Vishal (2016) Driven to metastasize: Kinases as potential therapeutic targets in prostate cancer. Proc Natl Acad Sci U S A 113:473-5
Allen, Eliezer M Van; Robinson, Dan; Morrissey, Colm et al. (2016) A comparative assessment of clinical whole exome and transcriptome profiling across sequencing centers: Implications for precision cancer medicine. Oncotarget :
Niknafs, Yashar S; Han, Sumin; Ma, Teng et al. (2016) The lncRNA landscape of breast cancer reveals a role for DSCAM-AS1 in breast cancer progression. Nat Commun 7:12791
Fabris, Linda; Ceder, Yvonne; Chinnaiyan, Arul M et al. (2016) The Potential of MicroRNAs as Prostate Cancer Biomarkers. Eur Urol 70:312-22
Shukla, Sudhanshu; Zhang, Xiang; Niknafs, Yashar S et al. (2016) Identification and Validation of PCAT14 as Prognostic Biomarker in Prostate Cancer. Neoplasia 18:489-99
Tomlins, Scott A; Day, John R; Lonigro, Robert J et al. (2016) Urine TMPRSS2:ERG Plus PCA3 for Individualized Prostate Cancer Risk Assessment. Eur Urol 70:45-53
Roychowdhury, Sameek; Chinnaiyan, Arul M (2016) Translating cancer genomes and transcriptomes for precision oncology. CA Cancer J Clin 66:75-88
Day, Kathleen C; Lorenzatti Hiles, Guadalupe; Kozminsky, Molly et al. (2016) HER2 and EGFR overexpression support metastatic progression of prostate cancer to bone. Cancer Res :

Showing the most recent 10 out of 45 publications