The number of physician-scientists and translational researchers working in lung cancer has not kept pace with the overall growth of the medical research community or with the growth in our basic knowledge base, resulting in an increasing number of unrealized basic and translational research opportunities. Yale is uniquely suited to helping rebuild this base with our strong commitment to basic and translational research. The Career Development Program (CDP) in the Yale SPORE in Lung Cancer (YSILC) has been designed to contribute substantively to ongoing efforts and new initiatives attempting to address this problem. Our translational research office at Yale (led by Dr. Herbst) has been committed to providing early seed funding and translational support to young investigators early in their research careers. The goal of the CDP is to educate a new generation of investigators committed to translational research in lung cancer. The CDP has substantial institutional commitment, both in terms of funding and infrastructure. Potential CDP candidates include promising junior faculty who are interested in establishing their career in translational lung cancer research or established investigators whose previous research has been in other areas. Junior faculty awardees will be paired with more established investigators in lung cancer research with a documented record of successful mentoring. In this way, the YSILC will stimulate the development of the next generation of physician scientists and translational researchers, addressing the most challenging issues in lung cancer research.

Public Health Relevance

PROGRAM NARRATIVE The Yale SPORE in Lung Cancer?s Career Development Program is a key program to foster the development of the next generation of physician-scientists in the area of human thoracic malignancies to faciliate diagnosis, prevention, and therapy of lung cancer.

National Institute of Health (NIH)
National Cancer Institute (NCI)
Specialized Center (P50)
Project #
Application #
Study Section
Special Emphasis Panel (ZCA1)
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
Yale University
New Haven
United States
Zip Code
Wilson, Frederick H; Politi, Katerina (2018) ERBB Signaling Interrupted: Targeting Ligand-Induced Pathway Activation. Cancer Discov 8:676-678
Wang, Guangchuan; Chow, Ryan D; Ye, Lupeng et al. (2018) Mapping a functional cancer genome atlas of tumor suppressors in mouse liver using AAV-CRISPR-mediated direct in vivo screening. Sci Adv 4:eaao5508
Villarroel-Espindola, Franz; Yu, Xiaoqing; Datar, Ila et al. (2018) Spatially Resolved and Quantitative Analysis of VISTA/PD-1H as a Novel Immunotherapy Target in Human Non-Small Cell Lung Cancer. Clin Cancer Res 24:1562-1573
Anastasiadou, Eleni; Jacob, Leni S; Slack, Frank J (2018) Non-coding RNA networks in cancer. Nat Rev Cancer 18:5-18
Bisserier, Malik; Wajapeyee, Narendra (2018) Mechanisms of resistance to EZH2 inhibitors in diffuse large B-cell lymphomas. Blood 131:2125-2137
Chow, Ryan D; Chen, Sidi (2018) Cancer CRISPR Screens In Vivo. Trends Cancer 4:349-358
Xiao, Qian; Wu, Jibo; Wang, Wei-Jia et al. (2018) DKK2 imparts tumor immunity evasion through ?-catenin-independent suppression of cytotoxic immune-cell activation. Nat Med 24:262-270
Goldberg, Sarah B; Narayan, Azeet; Kole, Adam J et al. (2018) Early Assessment of Lung Cancer Immunotherapy Response via Circulating Tumor DNA. Clin Cancer Res 24:1872-1880
Gilles, Maud-Emmanuelle; Slack, Frank J (2018) Let-7 microRNA as a potential therapeutic target with implications for immunotherapy. Expert Opin Ther Targets 22:929-939
Nagarajan, Maxwell B; Tentori, Augusto M; Zhang, Wen Cai et al. (2018) Nonfouling, Encoded Hydrogel Microparticles for Multiplex MicroRNA Profiling Directly from Formalin-Fixed, Paraffin-Embedded Tissue. Anal Chem 90:10279-10285

Showing the most recent 10 out of 74 publications