Projed 3 combines the research efforts of Dre. Scott Hemby, Steve Childere and Allyn Howlett. The overall goal is to identity biochemical adaptetions with chronic cocaine self-administration and determine the degree to which topiramate and other candidate medications can reveree or attenuate cocaine-induced alterations in specific brain regions. Studies will utilize a combination of procedures to evaluate neuronal plasticity in receptore and their signal transdudion resulting from cocaine administration and the effeds of potential b-eatment agents. The studies will determine changes in gene and protein expression as well as fundional fine-tuning manifested as phosphorylation modifications in discrete brain regions from rodents and nonhuman primates following cocaine self-administration and treatment with the candidate medications. Numerous studies indicate dysregulation of dopaminergic pathways and signaling in humans and animal models, yet pharmacotherapies that diredly target dopamine signaling have proven only moderately successful. An alternative strategy Is to identity medications that target neuroti^ansmitter systems that augment dopaminergic signaling diredty and/or indiredty. Identification of key biochemical processes associated with efficacious medications will provide the basis for development and optimization of next generation pharmacotherapies that can better target cocaine abuse as well as further our underetanding of neurobiological basis of cocaine reinforcement.
Specific Aim 1 (Childere and Howlett labs) will charaderize the effeds of candidate medications on the biochemical neuroadaptations associated with chronic cocaine exposure in rodent models by 1) determining changes in receptor binding properties of ionotropic and metabofropic receptore as well as fondional adivation of GPCR's using GTPyS binding and 2) examining changes In signal transdudion via activation of protein kinase pathways.
Specific Aim 2 (Hemby lab) will assess biochemical neuroadaptations of candidate medication efficacy associated with chronic cocaine exposure in riiesus monkeys by 1) examining mRNA and protein expression of ionotropic glutamate and GABA receptore and related synaptic proteins, as well as targeted proteomic analysis of receptor subunit complexes to provide a more compreliensive underetanding of coordinate synaptic protein alterations and 2) assess mRNA and protein expression of BDNF, frkB and related signaling pathway alterations (akt, PLCg, ERK) in the nucleus accumbens and caudate/putamen.

Public Health Relevance

Identifying the molecular and neurochemical targets that mediate the actions of potential pharmacotherapies to reduce cocaine reinforcement will provide a better understanding of the neurobiological mechanisms of cocaine addiction, as well as provide ways to develop therapeutic agents with higher efficacies and less side effects.

National Institute of Health (NIH)
National Institute on Drug Abuse (NIDA)
Specialized Center (P50)
Project #
Application #
Study Section
Special Emphasis Panel (ZDA1-EXL-T)
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
Wake Forest University Health Sciences
United States
Zip Code
Fetterhoff, Dustin; Opris, Ioan; Simpson, Sean L et al. (2015) Multifractal analysis of information processing in hippocampal neural ensembles during working memory under ??-tetrahydrocannabinol administration. J Neurosci Methods 244:136-53
Siciliano, Cody A; Calipari, Erin S; Ferris, Mark J et al. (2014) Biphasic mechanisms of amphetamine action at the dopamine terminal. J Neurosci 34:5575-82
Smith, Hilary R; Beveridge, Thomas J R; Nader, Michael A et al. (2014) Regionally-specific alterations in myelin proteins in nonhuman primate white matter following prolonged cocaine self-administration. Drug Alcohol Depend 137:143-7
Pattison, Lindsey P; McIntosh, Scot; Sexton, Tammy et al. (2014) Changes in dopamine transporter binding in nucleus accumbens following chronic self-administration cocaine: heroin combinations. Synapse 68:437-44
Siciliano, Cody A; Calipari, Erin S; Jones, Sara R (2014) Amphetamine potency varies with dopamine uptake rate across striatal subregions. J Neurochem 131:348-55
Beveridge, Thomas J R; Smith, Hilary R; Nader, Susan H et al. (2014) Functional consequences of cocaine re-exposure after discontinuation of cocaine availability. Neuropharmacology 85:528-37
Ferris, Mark J; EspaƱa, Rodrigo A; Locke, Jason L et al. (2014) Dopamine transporters govern diurnal variation in extracellular dopamine tone. Proc Natl Acad Sci U S A 111:E2751-9
Gill, Kathryn E; Chappell, Ann M; Beveridge, Thomas J R et al. (2014) Chronic methylphenidate treatment during early life is associated with greater ethanol intake in socially isolated rats. Alcohol Clin Exp Res 38:2260-8
Nader, Michael A; Banks, Matthew L (2014) Environmental modulation of drug taking: Nonhuman primate models of cocaine abuse and PET neuroimaging. Neuropharmacology 76 Pt B:510-7
Bough, Kristopher J; Amur, Shashi; Lao, Guifang et al. (2014) Biomarkers for the development of new medications for cocaine dependence. Neuropsychopharmacology 39:202-19

Showing the most recent 10 out of 233 publications