G protein-gated inwardly-rectifying potassium ion channels (GIRK) mediate the postsynaptic inhibitory effect of many neurotransmitters and related drugs of abuse. The long-term goal of my research is to understand how GIRK channels influence behaviors associated with the modulation of inhibitory neuretransmitter signaling pathways. Recent findings from both forward and reverse genetic studies have suggested that the GIRK3 subunit influences the sensitivity of mice to key behavioral effects of opiates, including analgesia, reward, and dependence. Though the GIRK3 cDNA was cloned more than a decade ago, the precise function of this subunit remains controversial. The goal of this proposal is to understand how and where GIRK3 influences the sensitivity of mice to the behavioral effects of opiates. Our current working hypothesis is that GIRK3 assembles with other GIRK subunits to form functional channels that are relatively insensitive to GABA(B)-dependent inhibition. Indeed, preliminary studies show the loss of GIRK3 renders dopamine neurons of the VTA more sensitive to GABA(B) receptor activation. The observed decreased sensitivity of mice lacking GIRK3 to the behavioral effects of opiates could reflect, therefore, an increased sensitivity of VTA dopamine neurons to the tonic GABA(B)-dependent inhibition provided by local GABAergic interneurons. Consequently, relatively high levels of opiates would be required to disinhibit VTA dopamine neurons, a process thought to underlie the motor stimulatory and reinforcing effects of opiates such as morphine. This working hypothesis and conceptual framework will be tested using multi-disciplinary approaches described in two specific aims: #1) To measure the contribution of GIRK3 to GABA(B)- dependent inhibition in neurons. The function of GIRK3 will be evaluated by measuring GABA(B)-dependent GIRK currents in cultured neurons following multiple genetic manipulations designed to perturb the level and/or function of GIRK3. #2) To probe the contribution of GIRK3 and the VTA to opiate-induced behaviors. Stereotaxic methods to deliver drugs and genetic reagents to the mouse VTA will be employed, followed by assessments of opiate-induced behavior in an established testing paradigm.

Agency
National Institute of Health (NIH)
Institute
National Institute on Drug Abuse (NIDA)
Type
Specialized Center (P50)
Project #
5P50DA011806-15
Application #
8378943
Study Section
Special Emphasis Panel (ZDA1-RXL-E)
Project Start
Project End
2014-06-30
Budget Start
2012-07-01
Budget End
2013-06-30
Support Year
15
Fiscal Year
2012
Total Cost
$156,019
Indirect Cost
$51,328
Name
University of Minnesota Twin Cities
Department
Type
DUNS #
555917996
City
Minneapolis
State
MN
Country
United States
Zip Code
55455
Kibaly, Cherkaouia; Kam, Angel Y F; Loh, Horace H et al. (2016) Naltrexone Facilitates Learning and Delays Extinction by Increasing AMPA Receptor Phosphorylation and Membrane Insertion. Biol Psychiatry 79:906-16
Banerjee, S; Sindberg, G; Wang, F et al. (2016) Opioid-induced gut microbial disruption and bile dysregulation leads to gut barrier compromise and sustained systemic inflammation. Mucosal Immunol 9:1418-1428
Hwang, Cheol Kyu; Wagley, Yadav; Law, Ping-Yee et al. (2015) Analysis of epigenetic mechanisms regulating opioid receptor gene transcription. Methods Mol Biol 1230:39-51
Wang, Yan; Ge, Yan-Hui; Wang, Yan-Xia et al. (2015) Modulation of mTOR Activity by μ-Opioid Receptor is Dependent upon the Association of Receptor and FK506-Binding Protein 12. CNS Neurosci Ther 21:591-8
Kotecki, Lydia; Hearing, Matthew; McCall, Nora M et al. (2015) GIRK Channels Modulate Opioid-Induced Motor Activity in a Cell Type- and Subunit-Dependent Manner. J Neurosci 35:7131-42
Banerjee, Santanu; Ninkovic, Jana; Meng, Jingjing et al. (2015) Morphine compromises bronchial epithelial TLR2/IL17R signaling crosstalk, necessary for lung IL17 homeostasis. Sci Rep 5:11384
Meng, Jingjing; Banerjee, Santanu; Li, Dan et al. (2015) Opioid Exacerbation of Gram-positive sepsis, induced by Gut Microbial Modulation, is Rescued by IL-17A Neutralization. Sci Rep 5:10918
Wang, Yan; Wang, Yan-Xia; Liu, Ting et al. (2015) μ-Opioid receptor attenuates Aβ oligomers-induced neurotoxicity through mTOR signaling. CNS Neurosci Ther 21:8-14
Yan, Ying-Hui; Wang, Yan; Zhao, Lan-Xue et al. (2014) Role of FK506 binding protein 12 in morphine-induced μ-opioid receptor internalization and desensitization. Neurosci Lett 566:231-5
Koodie, Lisa; Yuan, Hongyan; Pumper, Jeffery A et al. (2014) Morphine inhibits migration of tumor-infiltrating leukocytes and suppresses angiogenesis associated with tumor growth in mice. Am J Pathol 184:1073-84

Showing the most recent 10 out of 305 publications