Estimates indicate that addiction cost the U.S. economy neariy one half-trillion dollars per year. The mechanisms driving this behavior are unclear, but involve drug-conditioned cues. In animal models this is attributed to an interaction between dopamine and glutamate neurons In the prefrontal cortex (PFC). However, there remains a lack of understanding ofthe cellular mechanism underiying this interaction. This hampers the development of effective pharmacological treatment strategies for addiction. The long-term objective of this proposal is to identify cellular abnormalities in the PFC that may provide effective therapeutic targets to restore function and thereby prevent relapse to drug seeking. In pyramidal neurons, firing patterns during drug self-administration are regulated in part by dopamine activation of beta-adrenergic receptors (?- AR), which increase intracellular calcium. This activates KCNQ channels to control spike frequency adaptation, which limits the frequency of action potential firing. The central hypothesis of this proposal Is that the ?-AR -signaling cascade is upregulated by chronic cocaine self-administration and depresses KCNQ- mediated inhibition during cue-induced reinstatement of cocaine seeking. To explore the interaction between dopamine and KCNQ-inhibition in PFC neurons, we will record currents mediated by KCNQ that are coupled to of ?-ARs. Patch-clamp recordings will be performed in acute brain slices from rats trained to self- administer cocaine and control (yoked saline) rats, before or after cue-induced reinstatement. The mechanism and functional impact ofthe dopamine-suppressed KCNQ signal on reinstatement is unknown and will be examined in the first two specific aims of this proposal. While activation ofthe prelimbic PFC (PL) initiates cocaine seeking, the projection from the infralimbic PFC (IL) inhibits cocaine seeking. Thus, Aim-2 will examine whether dopamine-suppressed KCNQ signaling is specific to the PL, or also occurs in the IL.
Aim -3 will evaluate if manipulation of ?-AR signaling normalizes the KCNQ adaptation during relapse. The results of the proposed experiments are expected to positively influence human health because they should identify novel cellular targets for development of improved therapies to treat drug-seeking behaviors.

Public Health Relevance

Substance abuse costs the U.S. neariy one half-trillion dollars annually (NIDA), and pharmacological treatment can help reduce these costs. At present, there are no effective pharmacotherapeutic interventions for cocaine addiction. Identification ofthe KCNQ-mediated neuroadaptations in glutamate transmission in cortical neurons after cocaine self-administration is expected to reveal novel cellular targets for therapeutic development and therebv lead to a better understanding of. and treatment for, relaose to drug seeking.

Agency
National Institute of Health (NIH)
Institute
National Institute on Drug Abuse (NIDA)
Type
Specialized Center (P50)
Project #
5P50DA015369-12
Application #
8661724
Study Section
Special Emphasis Panel (ZDA1)
Project Start
Project End
Budget Start
2014-05-01
Budget End
2015-04-30
Support Year
12
Fiscal Year
2014
Total Cost
Indirect Cost
Name
Medical University of South Carolina
Department
Type
DUNS #
City
Charleston
State
SC
Country
United States
Zip Code
29403
Spencer, Sade; Garcia-Keller, Constanza; Roberts-Wolfe, Douglas et al. (2017) Cocaine Use Reverses Striatal Plasticity Produced During Cocaine Seeking. Biol Psychiatry 81:616-624
Bobadilla, Ana-Clara; Garcia-Keller, Constanza; Heinsbroek, Jasper A et al. (2017) Accumbens Mechanisms for Cued Sucrose Seeking. Neuropsychopharmacology 42:2377-2386
Smith, Alexander C W; Scofield, Michael D; Heinsbroek, Jasper A et al. (2017) Accumbens nNOS Interneurons Regulate Cocaine Relapse. J Neurosci 37:742-756
Spencer, Sade; Kalivas, Peter W (2017) Glutamate Transport: A New Bench to Bedside Mechanism for Treating Drug Abuse. Int J Neuropsychopharmacol 20:797-812
Moorman, David E; James, Morgan H; Kilroy, Elisabeth A et al. (2017) Orexin/hypocretin-1 receptor antagonism reduces ethanol self-administration and reinstatement selectively in highly-motivated rats. Brain Res 1654:34-42
Barry, Sarah M; McGinty, Jacqueline F (2017) Role of Src Family Kinases in BDNF-Mediated Suppression of Cocaine-Seeking and Prevention of Cocaine-Induced ERK, GluN2A, and GluN2B Dephosphorylation in the Prelimbic Cortex. Neuropsychopharmacology 42:1972-1980
Bobadilla, Ana-Clara; Heinsbroek, Jasper A; Gipson, Cassandra D et al. (2017) Corticostriatal plasticity, neuronal ensembles, and regulation of drug-seeking behavior. Prog Brain Res 235:93-112
Heinsbroek, Jasper A; Neuhofer, Daniela N; Griffin 3rd, William C et al. (2017) Loss of Plasticity in the D2-Accumbens Pallidal Pathway Promotes Cocaine Seeking. J Neurosci 37:757-767
Kupchik, Yonatan M; Kalivas, Peter W (2017) The Direct and Indirect Pathways of the Nucleus Accumbens are not What You Think. Neuropsychopharmacology 42:369-370
Spencer, Sade; Scofield, Michael; Kalivas, Peter W (2016) The good and bad news about glutamate in drug addiction. J Psychopharmacol 30:1095-1098

Showing the most recent 10 out of 167 publications