Two major challenges to advance research in pediatric renal disease are: (1) there are too few investigators entering pediatric nephrology research and (2) young investigators have inadequate opportunities to move from postdoctoral training to independent investigator. Therefore, emphasis should be placed on the enhancement ofthe research career of new scientists interested in pediatric renal research. The Pilot and Feasibility Projects can help fill this important gap in the development of new, talented pediatric nephrologists as well as Ph.D. scientists. Furthermore, the availability of these pilot projects makes it possible for senior investigators to move in new research directions or enter the field of kidney research from another discipline. In this proposal we describe the means to achieve the goal of increasing the number and quality of scientists involved in Pediatric Nephrology research centered around the theme of """"""""kidney development: Cell Fate and Precursors of Disease in the Young and Adult"""""""". To achieve those goals, we propose an effective Pilot and Feasibility program administration with: a) clear eligibility criteria, b) a rigorous process for evaluation and approval of projects, c) broad and exciting recruitment plans to attract new young investigators, and d) proven strategies to facilitate the recruitment of women and minorities. An additional goal is to ensure the appropriate mentoring of junior scientists by providiing protected time, resources and broad intellectual interactions to maximize their chances for success in academic life.

Public Health Relevance

Rapid advances in the field of Pediatric Nephrology research are hamperred by the small size of the research workforce. This Pilot and Feasibility program will encourage young and established investigators to take up research relevant to kidney development and disease and speed the acquisition of kniowledge that can be applied to treatment of children with renal and urological diseases.

National Institute of Health (NIH)
National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK)
Specialized Center (P50)
Project #
Application #
Study Section
Special Emphasis Panel (ZDK1-GRB-G)
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
University of Virginia
United States
Zip Code
Lu, Ko-Ting; Keen, Henry L; Weatherford, Eric T et al. (2016) Estrogen Receptor α Is Required for Maintaining Baseline Renin Expression. Hypertension 67:992-9
Hilliard, Sylvia A; El-Dahr, Samir S (2016) Epigenetics mechanisms in renal development. Pediatr Nephrol 31:1055-60
Shinohara, Keisuke; Liu, Xuebo; Morgan, Donald A et al. (2016) Selective Deletion of the Brain-Specific Isoform of Renin Causes Neurogenic Hypertension. Hypertension 68:1385-1392
Forbes, M S; Thornhill, B A; Galarreta, C I et al. (2016) A population of mitochondrion-rich cells in the pars recta of mouse kidney. Cell Tissue Res 363:791-803
Gomez, R Ariel; Sequeira-Lopez, Maria Luisa S (2016) Novel Functions of Renin Precursors in Homeostasis and Disease. Physiology (Bethesda) 31:25-33
Hu, Yan; Li, Minghong; Göthert, Joachim R et al. (2016) Hemovascular Progenitors in the Kidney Require Sphingosine-1-Phosphate Receptor 1 for Vascular Development. J Am Soc Nephrol 27:1984-95
Belyea, Brian C; Xu, Fang; Sequeira-Lopez, Maria Luisa S et al. (2015) Loss of Jagged1 in renin progenitors leads to focal kidney fibrosis. Physiol Rep 3:
Chevalier, Robert L (2015) Congenital urinary tract obstruction: the long view. Adv Chronic Kidney Dis 22:312-9
Lin, Eugene E; Pentz, Ellen S; Sequeira-Lopez, Maria Luisa S et al. (2015) Aldo-keto reductase 1b7, a novel marker for renin cells, is regulated by cyclic AMP signaling. Am J Physiol Regul Integr Comp Physiol 309:R576-84
Sergio, Maria; Galarreta, Carolina I; Thornhill, Barbara A et al. (2015) The Fate of Nephrons in Congenital Obstructive Nephropathy: Adult Recovery is Limited by Nephron Number Despite Early Release of Obstruction. J Urol 194:1463-72

Showing the most recent 10 out of 24 publications