The CCHMC PCEN Gene Expression Core (Core A) provides essential NexGen sequencing based RNA- Seq services, as well as more conventional microarray based gene expression technology. This is coupled with an integrative bioinformatics analysis capacity for investigators. Core A will provide consultation and collaboration with respect to experimental design, data generation and data analysis. Core A will facilitate planning and execution of mRNA, miRNA and total RNA (including noncoding RNA) gene expression analysis using a variety of technologies, including multiple library preparation and target amplification protocols for RNA-Seq and microarrays, using the lllumina HiSeq 2000 for NexGen analysis, and both Affymetrix and lllumina platforms for microarray analysis. In addition we offer capacity for Chip-Chip, Chip- Seq RNA splicing and promoter profiling analyses. Data from these technologies are fully interfaced to their corresponding bioinformatics analysis platforms, custom developed databases for sample and tracking, and a suite of advanced analysis softwares for DNA, genomic and transcriptomic analyses are readily accessible to the Center's investigators through a high performance computing environment Core A will dramatically enhance the ability ofthe members ofthe PCEN to make use of global gene expression technologies in their research projects. In addition the core will provide dedicated support for data analysis, collaboration, and educational activities for both established and junior investigators, as well as trainees.
Aim 1 will empower Center members by providing access to integrated state ofthe art gene expression technologies with which to apply genomics methods to accelerate molecular nephrology research.
Aim 2 will educate, assist, and iriiprove the use of global genomics approaches, infrastructure and specialized tools for the enhancement of research productivity and discovery by Center investigators.
Aim 3 will develop and disseminate specialized data sets and the use of advanced analytic techniques and/or protocols to facilitate translation of research data to accelerate basic and applied research and its translation to improved clinical care.

Public Health Relevance

Pediatric kidney diseases due to acute kidney injury, focal segmental glomerulosclerosis, and lupus nephritis contribute to an enormous major impact on the U.S. public health and a major financial burden. The Gene Expression Core ofthis Center of Excellence in Nephrology will provide critical genomic tools for miiltiple investigators to advance their studies on these three disease states to change their dismal outcomes

Agency
National Institute of Health (NIH)
Institute
National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK)
Type
Specialized Center (P50)
Project #
1P50DK096418-01
Application #
8397957
Study Section
Special Emphasis Panel (ZDK1-GRB-G (M3))
Project Start
Project End
Budget Start
2012-09-21
Budget End
2013-08-31
Support Year
1
Fiscal Year
2012
Total Cost
$152,507
Indirect Cost
$52,829
Name
Cincinnati Children's Hospital Medical Center
Department
Type
DUNS #
071284913
City
Cincinnati
State
OH
Country
United States
Zip Code
45229
Valiente-Alandi, Iñigo; Potter, Sarah J; Salvador, Ane M et al. (2018) Inhibiting Fibronectin Attenuates Fibrosis and Improves Cardiac Function in a Model of Heart Failure. Circulation 138:1236-1252
Jotwani, Vasantha; Katz, Ronit; Ix, Joachim H et al. (2018) Urinary Biomarkers of Kidney Tubular Damage and Risk of Cardiovascular Disease and Mortality in Elders. Am J Kidney Dis 72:205-213
Drake, Keri A; Adam, Mike; Mahoney, Robert et al. (2018) Disruption of Hox9,10,11 function results in cellular level lineage infidelity in the kidney. Sci Rep 8:6306
Forster, Catherine S; Jackson, Elizabeth; Ma, Qing et al. (2018) Predictive ability of NGAL in identifying urinary tract infection in children with neurogenic bladders. Pediatr Nephrol 33:1365-1374
Magella, Bliss; Mahoney, Robert; Adam, Mike et al. (2018) Reduced Abd-B Hox function during kidney development results in lineage infidelity. Dev Biol 438:84-93
Potter, S Steven (2018) Single-cell RNA sequencing for the study of development, physiology and disease. Nat Rev Nephrol 14:479-492
Greenberg, Jason H; Devarajan, Prasad; Thiessen-Philbrook, Heather R et al. (2018) Kidney injury biomarkers 5 years after AKI due to pediatric cardiac surgery. Pediatr Nephrol 33:1069-1077
Benoit, Stefanie Woolridge; Devarajan, Prasad (2018) Acute kidney injury: emerging pharmacotherapies in current clinical trials. Pediatr Nephrol 33:779-787
Magella, Bliss; Adam, Mike; Potter, Andrew S et al. (2018) Cross-platform single cell analysis of kidney development shows stromal cells express Gdnf. Dev Biol 434:36-47
Lang, Joshua; Katz, Ronit; Ix, Joachim H et al. (2018) Association of serum albumin levels with kidney function decline and incident chronic kidney disease in elders. Nephrol Dial Transplant 33:986-992

Showing the most recent 10 out of 124 publications