Burn injury induces extensive oxidative stress which leads to derangements in the physiology of a variety of tissues. Over the past several years we have conducted extensive genome-wide studies aimed at mapping genes the transcription of which are increased or decreased after burn injury in human subjects over the time course after injury. These studies have revealed changes in transcriptions of hundreds of genes in skeletal muscle and adipose tissue that are key mediators ofthe metabolic alterations associated with burn injury. Base on these findings, we hypothesize that administration of agents that reduce this oxidative stress by scavenging reactive oxygen species (ROS) will aid in normalization of the metabolic alterations induced by burn injury. The tetra peptide SS-31 (D-Arg-Dmt-Lys-Phe-NH2) is an extremely potent mitochondrial targeted ROS scavenger and thus is a particulariy promising candidate molecule for this purpose. In this project we plan to study the effects of SS31 treatment of burn induced alterations in skeletal muscle metabolism at both the genetic and physiological levels. In the first Specific Aim, we plan to develop a chip for studying SS31 induced alterations in gene expression in murine models of burn injury.
In Specific Aim 2 we plan to perform parallel studies ofthe effects of SS31 on physiological alterations induced by burn injury in mice,including: 1. Treatment on plasma glucose and insulin kinetics and insulin sensitivity of skeletal muscle after burn injury. 2. PET studies ofthe effects of SS31 on burn induced alterations in: a. glucose metabolism, b. fatty acid metabolism, c. TCA cycle activity, d. mitochondrial function and d. muscle cell apoptosis associated with injury. 3. Stable isotope studies ofthe effect of SS31 on burn induced alterations in glucose, amino acid and fatty acid metabolism.
In Specific Aim 4, we will extend these investigations of the effect(s) of SS31 on mitochondrial function to higher animals;initially Rhesus monkeys treated with lipopolysaccharide (LPS) and ultimately humans with burn injury. Overall, our studies will provide a firm basis for future clinical trials of SS31 for the treatment of alterations in mitochondrial function produced by burn injury.

Public Health Relevance

These studies will establish the role of SS31 in reducing the oxidative stress by scavening reactive oxygen species (ROS) after burn injury and should provide insights for the design of future clinical trials of this peptide for the treatment of alterations in mitochondrial function produced by burn injury.

National Institute of Health (NIH)
National Institute of General Medical Sciences (NIGMS)
Specialized Center (P50)
Project #
Application #
Study Section
Special Emphasis Panel (ZGM1-SRC-5 (TB))
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
Massachusetts General Hospital
United States
Zip Code
Zhao, Gaofeng; Yu, Yong-Ming; Kaneki, Masao et al. (2015) Simvastatin reduces burn injury-induced splenic apoptosis via downregulation of the TNF-?/NF-?B pathway. Ann Surg 261:1006-12
Watada, Susumu; Yu, Yong-Ming; Fischman, Alan J et al. (2014) Evaluation of intragastric vs intraperitoneal glucose tolerance tests in the evaluation of insulin resistance in a rodent model of burn injury and glucagon-like polypeptide-1 treatment. J Burn Care Res 35:e66-72
Zhao, Gaofeng; Yu, Yong-Ming; Shoup, Timothy M et al. (2014) Membrane potential-dependent uptake of 18F-triphenylphosphonium--a new voltage sensor as an imaging agent for detecting burn-induced apoptosis. J Surg Res 188:473-9
Carter, Edward A; Paul, Kasie; Bonab, Ali A et al. (2014) Effect of exercise on burn-induced changes in tissue-specific glucose metabolism. J Burn Care Res 35:470-3
Lee, Sangseok; Yang, Hong-Seuk; Sasakawa, Tomoki et al. (2014) Immobilization with atrophy induces de novo expression of neuronal nicotinic *7 acetylcholine receptors in muscle contributing to neurotransmission. Anesthesiology 120:76-85
Fu, Glenn K; Xu, Weihong; Wilhelmy, Julie et al. (2014) Molecular indexing enables quantitative targeted RNA sequencing and reveals poor efficiencies in standard library preparations. Proc Natl Acad Sci U S A 111:1891-6
Khan, Mohammed A S; Sahani, Nita; Neville, Kevin A et al. (2014) Nonsurgically induced disuse muscle atrophy and neuromuscular dysfunction upregulates alpha7 acetylcholine receptors. Can J Physiol Pharmacol 92:1-8
Ueda, Masashi; Iwasaki, Hajime; Wang, Shuxing et al. (2014) Cannabinoid receptor type 1 antagonist, AM251, attenuates mechanical allodynia and thermal hyperalgesia after burn injury. Anesthesiology 121:1311-9
Ibrahim, Amir; Fagan, Shawn; Keaney, Tim et al. (2014) A simple cost-saving measure: 2.5% mafenide acetate solution. J Burn Care Res 35:349-53
Shank, Erik S; Martyn, Jeevendra A; Donelan, Mathias B et al. (2014) Ultrasound-Guided Regional Anesthesia for Pediatric Burn Reconstructive Surgery: A Prospective Study. J Burn Care Res :

Showing the most recent 10 out of 77 publications