This core will coordinate and provide: 1. human cell lines ((volunteer neutrophils, monocytes, epithelial cells, (pulmonary microvascular endoithelial cells, hMVEC);2. imaging and optical experiment facility (FRET, 3D reconstruction, multichannel imaging and cytometry);3. Mass spectroscopic protein analysis and 4. efficient use of a perishable inventory of labeled primary and secondary antibodies. At present the Core is equipped for full tissue culture capabilities, two digital deconvoluting microscopes equipped to perform live or fixed cell 3D imaging in upto 4 color channels;Beckman Coulter flow cytometer for uptpo 5 fluorophores, 3 mass spectrometers with supporting 1 and 2 gel elctrophoresis equipment, and robotic spot pickers. The Core is staffed by personnel who are highly experienced in all aspects of primary human cell culture, various imaging methodologies and proteomics. The core will actively move into the future (2-4 years), 1. by linking data to national databases (primarily the GEO project) and 2. expanding its own repertoire of analytical methods before the need arises, 3. Linking to other core analytical efforts (NMR, MS, microarrays) within the region.

Agency
National Institute of Health (NIH)
Institute
National Institute of General Medical Sciences (NIGMS)
Type
Specialized Center (P50)
Project #
5P50GM049222-19
Application #
8499334
Study Section
Special Emphasis Panel (ZGM1-PPBC-5)
Project Start
Project End
Budget Start
2013-06-01
Budget End
2014-05-31
Support Year
19
Fiscal Year
2013
Total Cost
$426,423
Indirect Cost
$147,715
Name
University of Colorado Denver
Department
Type
DUNS #
041096314
City
Aurora
State
CO
Country
United States
Zip Code
80045
Slaughter, Anne L; D'Alessandro, Angelo; Moore, Ernest E et al. (2016) Glutamine metabolism drives succinate accumulation in plasma and the lung during hemorrhagic shock. J Trauma Acute Care Surg 81:1012-1019
D'Alessandro, Angelo; Moore, Hunter B; Moore, Ernest E et al. (2016) Plasma First Resuscitation Reduces Lactate Acidosis, Enhances Redox Homeostasis, Amino Acid and Purine Catabolism in a Rat Model of Profound Hemorrhagic Shock. Shock 46:173-82
Kelher, Marguerite R; McLaughlin, Nathan J D; Banerjee, Anirban et al. (2016) LysoPCs induce Hck- and PKCδ-mediated activation of PKCγ causing p47phox phosphorylation and membrane translocation in neutrophils. J Leukoc Biol :
Moore, Hunter B; Moore, Ernest E; Burlew, Clay C et al. (2016) Establishing Benchmarks for Resuscitation of Traumatic Circulatory Arrest: Success-to-Rescue and Survival among 1,708 Patients. J Am Coll Surg 223:42-50
Moore, Hunter B; Moore, Ernest E; Liras, Ioannis N et al. (2016) Acute Fibrinolysis Shutdown after Injury Occurs Frequently and Increases Mortality: A Multicenter Evaluation of 2,540 Severely Injured Patients. J Am Coll Surg 222:347-55
Chapman, Michael P; Moore, Ernest E; Moore, Hunter B et al. (2016) Overwhelming tPA release, not PAI-1 degradation, is responsible for hyperfibrinolysis in severely injured trauma patients. J Trauma Acute Care Surg 80:16-23; discussion 23-5
D'alessandro, Angelo; Nemkov, Travis; Moore, Hunter B et al. (2016) Metabolomics of trauma-associated death: shared and fluid-specific features of human plasma vs lymph. Blood Transfus 14:185-94
Nemkov, Travis; D'Alessandro, Angelo; Hansen, Kirk C (2015) Three-minute method for amino acid analysis by UHPLC and high-resolution quadrupole orbitrap mass spectrometry. Amino Acids 47:2345-57
Chapman, Michael P; Moore, Ernest E; Chin, Theresa L et al. (2015) Combat: Initial Experience with a Randomized Clinical Trial of Plasma-Based Resuscitation in the Field for Traumatic Hemorrhagic Shock. Shock 44 Suppl 1:63-70
D'Alessandro, Angelo; Nemkov, Travis; Kelher, Marguerite et al. (2015) Routine storage of red blood cell (RBC) units in additive solution-3: a comprehensive investigation of the RBC metabolome. Transfusion 55:1155-68

Showing the most recent 10 out of 244 publications