Trauma and hemorrhage elicit an acute inflammatory response. This complex process is observed at the cellular, tissue, organ, and whole-organism levels. It is now appreciated that Damage-Associated Molecular Pattern (DAMP) molecules and the signaling cascades induced by their receptors on multiple cell types mediate and modulate central aspects of this inflammatory response. Though daunting at first blush, the complexity of inflammation can be studied and outcomes can be predicted using pioneering computational simulations created by our group. We hypothesize that a validated and calibrated mathematical model of inflammation and its pathologic consequences at the multiple scales will be useful for predicting outcome in patients suffering from traumatic/hemorrhagic shock. We will test this hypothesis in three Specific Aims.
In Aim 1, we will utilize gene- modified mice and cells, multiplexed analyte data, statistical methods, and multi-scale simulations of the inflammatory response in order to discern DAMP-driven master switches that might be modified therapeutically. Preconditioning (the phenomenon in which prior exposure to a given stimulus will modify the response to a subsequent stimulus) is a central feature of the non-linear Inflammatory trajectories and outcomes of trauma patients, and its dependence on initial conditions and other system states makes preconditioning a prime example of inflammation as a complex system.
In Aim 2, we will deflne in silico the in vitro and in vivo roles of DAMP'S and their receptors in the phenomenon of preconditioning.
In Aim 3, we will create patient-specific and population simulations of the human inflammatory response to trauma that include both plasma analyte dynamics and cytokine single nucleotide polymorphisms, coupled to in silico clinical trials using novel computational insights and methods. The research proposed herein will impact both basic and translational research on the inflammatory process of shock/trauma.

Public Health Relevance

The work proposed herein would lead to the creation of a series of computational simulations of inflammation, testing the hypothesis that the response to damaged tissue acts as a central mediator, integrator, and possible therapeutic target in the setting of trauma/hemorrhage. This work would include the creation of patient-specific diagnostics as well as simulated clinical trials, and thus is translational. PROJECJ/

National Institute of Health (NIH)
National Institute of General Medical Sciences (NIGMS)
Specialized Center (P50)
Project #
Application #
Study Section
Special Emphasis Panel (ZGM1-PPBC-5)
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
University of Pittsburgh
United States
Zip Code
Zettel, Kent R; Dyer, Mitchell; Raval, Jay S et al. (2016) Aged Human Stored Red Blood Cell Supernatant Inhibits Macrophage Phagocytosis in an HMGB1 Dependent Manner After Trauma in a Murine Model. Shock :
Constantine, Gregory; Buliga, Marius; Mi, Qi et al. (2016) Dynamic Profiling: Modeling the Dynamics of Inflammation and Predicting Outcomes in Traumatic Brain Injury Patients. Front Pharmacol 7:383
Abboud, Andrew; Namas, Rami A; Ramadan, Mostafa et al. (2016) Computational Analysis Supports an Early, Type 17 Cell-Associated Divergence of Blunt Trauma Survival and Mortality. Crit Care Med 44:e1074-e1081
Abboud, Andrew; Mi, Qi; Puccio, Ava et al. (2016) Inflammation Following Traumatic Brain Injury in Humans: Insights from Data-Driven and Mechanistic Models into Survival and Death. Front Pharmacol 7:342
Namas, Rami A; Almahmoud, Khalid; Mi, Qi et al. (2016) Individual-specific principal component analysis of circulating inflammatory mediators predicts early organ dysfunction in trauma patients. J Crit Care 36:146-153
He, Xingying; Qian, Yongbing; Li, Zhigang et al. (2016) TLR4-Upregulated IL-1β and IL-1RI Promote Alveolar Macrophage Pyroptosis and Lung Inflammation through an Autocrine Mechanism. Sci Rep 6:31663
Vogel, Sebastian; Rath, Dominik; Borst, Oliver et al. (2016) Platelet-derived high-mobility group box 1 promotes recruitment and suppresses apoptosis of monocytes. Biochem Biophys Res Commun 478:143-8
Korff, Sebastian; Loughran, Patricia; Cai, Changchun et al. (2016) Tlr2 on Bone Marrow and Non-Bone Marrow Derived Cells Regulates Inflammation and Organ Injury in Cooperation with Tlr4 During Resuscitated Hemorrhagic Shock. Shock 46:519-526
Namas, Rami A; Vodovotz, Yoram; Almahmoud, Khalid et al. (2016) Temporal Patterns of Circulating Inflammation Biomarker Networks Differentiate Susceptibility to Nosocomial Infection Following Blunt Trauma in Humans. Ann Surg 263:191-8
Kassab, Ghassan S; An, Gary; Sander, Edward A et al. (2016) Augmenting Surgery via Multi-scale Modeling and Translational Systems Biology in the Era of Precision Medicine: A Multidisciplinary Perspective. Ann Biomed Eng 44:2611-25

Showing the most recent 10 out of 292 publications