The Center for Cell Decision Processes at MIT (CDP Center; applies a modify-measure- mine-model paradigm to study receptor-mediated death and survival signaling in human cells. Pro-apoptotic and inflammatory pathways downstream of TNF, TRAIL and Fas death receptors are of particular interest, as are the pro-survival and mitogenic pathways activated by the six interacting ErbBl-4, IGF-1 and cMet growth factor receptors and by the T-cell receptor. The primary goal of the Center is to build mathematical models of signal transduction using a variety of methods ranging from statistical to physicochemical. All models incorporate empirical data and are subjected to rigorous experimental validation. To collect and systematize the data necessary to train and test models, the Center develops new mass spectrometry, microsystems and imaging methods as well as software to link data and models. Education, outreach and community development are core activities of the Center, and it will continue to support activities ranging from summer courses for high school students to sabbaticals for established scientists and engineers from minority-serving institutions, international conferences in systems biology and interdisciplinary communities it has established including CSBi at MIT and the Council for Systems Biology in Boston. CDP will build on its success in research through a five-part program that stresses (1) construction, calibration and validation of models of mammalian signaling processes in accessible cell-culture systems, (2) development of new experimental methods to gather quantitative and dynamic data from small cell populations and single-cells via array-based measurement, development of microfluidic devices and new approaches to live-cell imaging, (3) an emphasis on the systems biology of specialized cells, as it applies to primary T-cells, human hepatocytes and human neutrophils and to differences between healthy and diseased states in inflammatory disease and cancer, (4) continued development of electronically enabled research cores and information technologies, particularly those that enhance data sharing and collaboration, and (5) continued commitment to outreach and education through balanced programs with broad impact and those with the potential to substantially enhance individual careers.

National Institute of Health (NIH)
National Institute of General Medical Sciences (NIGMS)
Specialized Center (P50)
Project #
Application #
Study Section
Special Emphasis Panel (ZGM1-CBCB-4 (SB))
Program Officer
Brazhnik, Paul
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
Massachusetts Institute of Technology
Engineering (All Types)
Schools of Engineering
United States
Zip Code
Dasgupta, Tathagata; Croll, David H; Owen, Jeremy A et al. (2014) A fundamental trade-off in covalent switching and its circumvention by enzyme bifunctionality in glucose homeostasis. J Biol Chem 289:13010-25
Sarkar, Aniruddh; Kolitz, Sarah; Lauffenburger, Douglas A et al. (2014) Microfluidic probe for single-cell analysis in adherent tissue culture. Nat Commun 5:3421
Foight, Glenna Wink; Ryan, Jeremy A; Gullá, Stefano V et al. (2014) Designed BH3 peptides with high affinity and specificity for targeting Mcl-1 in cells. ACS Chem Biol 9:1962-8
Buck, Lorenna D; Inman, S Walker; Rusyn, Ivan et al. (2014) Co-regulation of primary mouse hepatocyte viability and function by oxygen and matrix. Biotechnol Bioeng 111:1018-27
Ebrahimkhani, Mohammad R; Neiman, Jaclyn A Shepard; Raredon, Micha Sam B et al. (2014) Bioreactor technologies to support liver function in vitro. Adv Drug Deliv Rev 69-70:132-57
Griffith, Linda G; Wells, Alan; Stolz, Donna B (2014) Engineering liver. Hepatology 60:1426-34
Cheow, Lih Feng; Sarkar, Aniruddh; Kolitz, Sarah et al. (2014) Detecting kinase activities from single cell lysate using concentration-enhanced mobility shift assay. Anal Chem 86:7455-62
AlQuraishi, Mohammed; Koytiger, Grigoriy; Jenney, Anne et al. (2014) A multiscale statistical mechanical framework integrates biophysical and genomic data to assemble cancer networks. Nat Genet 46:1363-71
Gujral, Taranjit S; Chan, Marina; Peshkin, Leonid et al. (2014) A noncanonical Frizzled2 pathway regulates epithelial-mesenchymal transition and metastasis. Cell 159:844-56
Kallenberger, Stefan M; Beaudouin, Joël; Claus, Juliane et al. (2014) Intra- and interdimeric caspase-8 self-cleavage controls strength and timing of CD95-induced apoptosis. Sci Signal 7:ra23

Showing the most recent 10 out of 180 publications