The Computation and Data Science Core provides a variety of computational capabilities that will support and enhance discovery and illumination of HIV biology. We have created a flexible and robust protein engineering platform that couples both design and screening approaches).1-10 These capabilities support de novo protein design and optimization of ligand binding, assembly, stability, and solubility properties. Complementary resources enable high-throughput screening using phage and yeast display.11 Computational modeling is further bolstered by atomistic and coarse-grained molecular dynamics simulations that leverage experimental datasets12,13 and multiscale parameterization strategies14-23 to model different interactions in the HIV life cycle and generate testable hypotheses. Conceptual depth is added by a range of evolutionary genomics resources, including phylogenetic and discovery pipelines that draw on primate diversity to inform human biology and provide access to primate gene sequences and cDNA clones to extend our biochemical and structural studies.24-27 Finally, we have established unique capabilities in molecular animation, scientific communication, and public outreach that feature the creation and dissemination of sophisticated, dynamic 3D visualizations of biological processes.

Agency
National Institute of Health (NIH)
Institute
National Institute of General Medical Sciences (NIGMS)
Type
Specialized Center (P50)
Project #
2P50GM082545-11
Application #
9411506
Study Section
Special Emphasis Panel (ZRG1)
Project Start
Project End
Budget Start
2017-08-01
Budget End
2018-07-31
Support Year
11
Fiscal Year
2017
Total Cost
Indirect Cost
Name
University of Utah
Department
Type
DUNS #
009095365
City
Salt Lake City
State
UT
Country
United States
Zip Code
84112
Wang, Haoqing; Barnes, Christopher O; Yang, Zhi et al. (2018) Partially Open HIV-1 Envelope Structures Exhibit Conformational Changes Relevant for Coreceptor Binding and Fusion. Cell Host Microbe 24:579-592.e4
Pastuzyn, Elissa D; Day, Cameron E; Kearns, Rachel B et al. (2018) The Neuronal Gene Arc Encodes a Repurposed Retrotransposon Gag Protein that Mediates Intercellular RNA Transfer. Cell 172:275-288.e18
Wagner, Jonathan M; Christensen, Devin E; Bhattacharya, Akash et al. (2018) General Model for Retroviral Capsid Pattern Recognition by TRIM5 Proteins. J Virol 92:
Donaldson, G P; Ladinsky, M S; Yu, K B et al. (2018) Gut microbiota utilize immunoglobulin A for mucosal colonization. Science 360:795-800
Bailey, Lucas J; Sheehy, Kimberly M; Dominik, Pawel K et al. (2018) Locking the Elbow: Improved Antibody Fab Fragments as Chaperones for Structure Determination. J Mol Biol 430:337-347
Pak, Alexander J; Voth, Gregory A (2018) Advances in coarse-grained modeling of macromolecular complexes. Curr Opin Struct Biol 52:119-126
Redman, Joseph S; Francis, J Nicholas; Marquardt, Robert et al. (2018) Pharmacokinetic and Chemical Synthesis Optimization of a Potent d-Peptide HIV Entry Inhibitor Suitable for Extended-Release Delivery. Mol Pharm 15:1169-1179
Larsen, Kevin P; Mathiharan, Yamuna Kalyani; Kappel, Kalli et al. (2018) Architecture of an HIV-1 reverse transcriptase initiation complex. Nature 557:118-122
Carter, Stephen D; Mageswaran, Shrawan K; Farino, Zachary J et al. (2018) Distinguishing signal from autofluorescence in cryogenic correlated light and electron microscopy of mammalian cells. J Struct Biol 201:15-25
Shepherd, Jason D (2018) Arc - An endogenous neuronal retrovirus? Semin Cell Dev Biol 77:73-78

Showing the most recent 10 out of 180 publications