The use of microfluidic devices has facilitated the detailed study of cellular behavior by providing the ability to tightly control the cellular microenvironment. Microfluidic devices can be used to generate stable or dynamic concentration gradients 227, temperature gradients 228, and dynamically changing media supplies. In this way, cells and organisms can be probed in environments that closely mimic their natural habitats, or in response to defined by dynamic challenges, and valuable information can be revealed that is masked by standard batch culture techniques. Microfluidic devices also have the potential to vastly improve microscopy technology. Combined with sensitive cameras, high-precision automated stages, and powerful computers, researchers have the ability to rapidly acquire and store large arrays of microscopic images, which can provide great detail about a population of living and growing cells 229. Utilizing this technology, researchers can track gene expression dynamics with more precision and higher temporal resolution than possible with standard microscopy. In a recent example of this technology, we have developed a platform that can subject a population of cells to a dynamically varying stimulus (Fig. D3.1a). The device was designed to generate a fluctuating media signal by dynamically combining two media reservoirs according to a time dependent function. We applied this technology to examine a well-studied eukaryotic gene-regulatory network ? the galactose utilization network in S. cerevisiae. By comparing the experimentally measured response of the network to dynamically changing metabolic conditions to computational simulations of an otherwise validated mathematical model of the network we were forced to predict that mRNA half-lifes of two key transcription factors GAL1 and GAL3 must be regulated by glucose 230. This form of post-transcriptional regulation, in which glucose acts to down-regulate GAL protein synthesis, was a previously unknown source of regulation in the galactose utilization network, and was only made possible by experimentally examining the systems emergent properties in response to dynamically regulated environmental conditions.

Agency
National Institute of Health (NIH)
Institute
National Institute of General Medical Sciences (NIGMS)
Type
Specialized Center (P50)
Project #
5P50GM085764-05
Application #
8729595
Study Section
Special Emphasis Panel (ZGM1-CBCB-2)
Project Start
Project End
Budget Start
2014-09-01
Budget End
2015-08-31
Support Year
5
Fiscal Year
2014
Total Cost
$157,496
Indirect Cost
$55,884
Name
University of California San Diego
Department
Type
DUNS #
804355790
City
La Jolla
State
CA
Country
United States
Zip Code
92093
Zhang, Wei; Bojorquez-Gomez, Ana; Velez, Daniel Ortiz et al. (2018) A global transcriptional network connecting noncoding mutations to changes in tumor gene expression. Nat Genet 50:613-620
Dai, Xiongfeng; Zhu, Manlu; Warren, Mya et al. (2018) Slowdown of Translational Elongation in Escherichia coli under Hyperosmotic Stress. MBio 9:
Muse, Evan D; Yu, Shan; Edillor, Chantle R et al. (2018) Cell-specific discrimination of desmosterol and desmosterol mimetics confers selective regulation of LXR and SREBP in macrophages. Proc Natl Acad Sci U S A 115:E4680-E4689
Bui, Nam; Huang, Justin K; Bojorquez-Gomez, Ana et al. (2018) Disruption of NSD1 in Head and Neck Cancer Promotes Favorable Chemotherapeutic Responses Linked to Hypomethylation. Mol Cancer Ther 17:1585-1594
Huang, Justin K; Carlin, Daniel E; Yu, Michael Ku et al. (2018) Systematic Evaluation of Molecular Networks for Discovery of Disease Genes. Cell Syst 6:484-495.e5
Ozturk, Kivilcim; Dow, Michelle; Carlin, Daniel E et al. (2018) The Emerging Potential for Network Analysis to Inform Precision Cancer Medicine. J Mol Biol 430:2875-2899
Yan, Jian; Chen, Shi-An A; Local, Andrea et al. (2018) Histone H3 lysine 4 monomethylation modulates long-range chromatin interactions at enhancers. Cell Res 28:204-220
Antonova-Koch, Yevgeniya; Meister, Stephan; Abraham, Matthew et al. (2018) Open-source discovery of chemical leads for next-generation chemoprotective antimalarials. Science 362:
Zarrinpar, Amir; Chaix, Amandine; Xu, Zhenjiang Z et al. (2018) Antibiotic-induced microbiome depletion alters metabolic homeostasis by affecting gut signaling and colonic metabolism. Nat Commun 9:2872
Cowell, Annie N; Istvan, Eva S; Lukens, Amanda K et al. (2018) Mapping the malaria parasite druggable genome by using in vitro evolution and chemogenomics. Science 359:191-199

Showing the most recent 10 out of 207 publications