The overarching aim of the Center is to provide a systems-level understanding for cellular decision-making focusing on the interrelated processes of cell proliferation, migration, and differentiation. Particularly, we will be focusing on how to develop and validate models that range from molecular single cell mechanisms to collective cell behavior. The center includes a research component with three synergistic projects, cores that will enrich systems biology research in Stanford, as well as an education component focusing on training graduate student and postdoctoral fellows in this emerging new field. We will also have an outreach effort to disseminate data sets and models and to invite researchers to participate in summer courses as well as to train in systems biology in Stanford. In the proposed research, we will focus on Collective Cell Proliferation by focusing on Xenopus laevis embryos and on primary human umbilical vein endothelial cells using novel biosensors developed in the participating laboratories. Our effort to understand Collective Cell Migration wil focus on mechanical models for collective migration based on novel insights into the propagation of force in 2-dimensional cell sheets. In our third effort to understand Collective Cel Differentiation we will be focusing on learning the rules by which cells collectively transition from proliferative to differentiated states using human induced pluripotent stem (IPS) cells, granule neuron precursors (GNP), adipocytes, and drosophila wing epithelial cells as models. Since neighboring cells tend to differentiate in a correlated fashion, we will seek to understand how cells coordinate differentiation by testing whether secreted factors and direct cell contact contribute to collective differentiation decisions. These research efforts will be augmented by the development of new perturbation and biosensor technologies that will enable us to validate models for these processes. The investigated biological projects share common regulatory designs, adding significant synergies that will enhance the change that significant new advances will be made in the proposed Center.

Public Health Relevance

The proposed work will elucidate fundamental regulatory mechanisms how cells divide, move and differentiate. These processes are critical in cancer, neurodegeneration and in many other diseases. Insights into the regulation of these processes may lead, with a longer term time horizon, to new types of therapies for these diseases.

Agency
National Institute of Health (NIH)
Institute
National Institute of General Medical Sciences (NIGMS)
Type
Specialized Center (P50)
Project #
5P50GM107615-05
Application #
9307912
Study Section
Special Emphasis Panel (ZGM1)
Program Officer
Nie, Zhongzhen
Project Start
2013-09-30
Project End
2018-06-30
Budget Start
2017-07-01
Budget End
2018-06-30
Support Year
5
Fiscal Year
2017
Total Cost
Indirect Cost
Name
Stanford University
Department
Pharmacology
Type
Schools of Medicine
DUNS #
009214214
City
Stanford
State
CA
Country
United States
Zip Code
94304
Dobens, Leonard L; Shipman, Anna; Axelrod, Jeffrey D (2018) FijiWingsPolarity: An open source toolkit for semi-automated detection of cell polarity. Fly (Austin) 12:23-33
Kovary, Kyle M; Taylor, Brooks; Zhao, Michael L et al. (2018) Expression variation and covariation impair analog and enable binary signaling control. Mol Syst Biol 14:e7997
Cheng, Xianrui; Ferrell Jr, James E (2018) Apoptosis propagates through the cytoplasm as trigger waves. Science 361:607-612
Breslow, David K; Hoogendoorn, Sascha; Kopp, Adam R et al. (2018) A CRISPR-based screen for Hedgehog signaling provides insights into ciliary function and ciliopathies. Nat Genet 50:460-471
Cappell, Steven D; Mark, Kevin G; Garbett, Damien et al. (2018) EMI1 switches from being a substrate to an inhibitor of APC/CCDH1 to start the cell cycle. Nature 558:313-317
Vasquez, Kimberly S; Shiver, Anthony L; Huang, Kerwyn Casey (2018) Cutting the Gordian Knot of the Microbiota. Mol Cell 70:765-767
Bahrami-Nejad, Zahra; Zhao, Michael L; Tholen, Stefan et al. (2018) A Transcriptional Circuit Filters Oscillating Circadian Hormonal Inputs to Regulate Fat Cell Differentiation. Cell Metab 27:854-868.e8
Ochoa, Jessica L; Sanchez, Laura M; Koo, Byoung-Mo et al. (2018) Marine Mammal Microbiota Yields Novel Antibiotic with Potent Activity Against Clostridium difficile. ACS Infect Dis 4:59-67
Shi, Handuo; Bratton, Benjamin P; Gitai, Zemer et al. (2018) How to Build a Bacterial Cell: MreB as the Foreman of E. coli Construction. Cell 172:1294-1305
Rojas, Enrique R; Billings, Gabriel; Odermatt, Pascal D et al. (2018) The outer membrane is an essential load-bearing element in Gram-negative bacteria. Nature 559:617-621

Showing the most recent 10 out of 236 publications