The proposed training program brings together a highly interactive and productive faculty of basic scientists and physician scientists from the School of Medicine at UNC who will focus on our overall theme of """"""""Innate Lung Defense"""""""". We offer our graduate students and fellow extraordinary opportunities in multidisciplinary research to become well trained as Tobacco Research Scientists. As outlined in this application, our record as mentors demonstrates that the outstanding new scientists that we propose to train will excel at interdisciplinary approaches which will facilitate the development of their own research programs focused on how the environment influences human disease. In essence, we want to train independent, highly efficient, and innovative investigators who can become successful Tobacco Regulatory Scientists. We wish them to have a broad spectrum of skills in basic and clinical sciences and to understand how Tobacco Regulatory Science is efficiently performed. We wish them to have experienced stand-alone, independent research admixed with collaborative research with other postdoctoral trainee colleagues and senior investigators. Finally, we wish them to know how to """"""""finish the game"""""""", i.e., write up their results for publication in high-quality peer-reviewed journals, and """"""""begin the game"""""""", i.e., learn how to write competitive grant applications to national agencies.

National Institute of Health (NIH)
National Heart, Lung, and Blood Institute (NHLBI)
Specialized Center (P50)
Project #
Application #
Study Section
Special Emphasis Panel (ZRG1)
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
University of North Carolina Chapel Hill
Chapel Hill
United States
Zip Code
Rebuli, Meghan E; Speen, Adam M; Clapp, Phillip W et al. (2017) Novel applications for a noninvasive sampling method of the nasal mucosa. Am J Physiol Lung Cell Mol Physiol 312:L288-L296
Ghosh, Arunava; Abdelwahab, Sabri H; Reeber, Steven L et al. (2017) Little Cigars are More Toxic than Cigarettes and Uniquely Change the Airway Gene and Protein Expression. Sci Rep 7:46239
Kesimer, Mehmet; Ford, Amina A; Ceppe, Agathe et al. (2017) Airway Mucin Concentration as a Marker of Chronic Bronchitis. N Engl J Med 377:911-922
Esther Jr, Charles R; Hill, David B; Button, Brian et al. (2017) Sialic acid-to-urea ratio as a measure of airway surface hydration. Am J Physiol Lung Cell Mol Physiol 312:L398-L404
Martin, Elizabeth M; Clapp, Phillip W; Rebuli, Meghan E et al. (2016) E-cigarette use results in suppression of immune and inflammatory-response genes in nasal epithelial cells similar to cigarette smoke. Am J Physiol Lung Cell Mol Physiol 311:L135-44
Rautou, Pierre-Emmanuel; Tatsumi, Kohei; Antoniak, Silvio et al. (2016) Hepatocyte tissue factor contributes to the hypercoagulable state in a mouse model of chronic liver injury. J Hepatol 64:53-9
Rowell, Temperance R; Tarran, Robert (2015) Will chronic e-cigarette use cause lung disease? Am J Physiol Lung Cell Mol Physiol 309:L1398-409
Xu, Xiaohua; Balsiger, Robert; Tyrrell, Jean et al. (2015) Cigarette smoke exposure reveals a novel role for the MEK/ERK1/2 MAPK pathway in regulation of CFTR. Biochim Biophys Acta 1850:1224-32
Ghosh, Arunava; Boucher, R C; Tarran, Robert (2015) Airway hydration and COPD. Cell Mol Life Sci 72:3637-52
Choi, Hyun-Chul; Kim, Christine Seul Ki; Tarran, Robert (2015) Automated acquisition and analysis of airway surface liquid height by confocal microscopy. Am J Physiol Lung Cell Mol Physiol 309:L109-18

Showing the most recent 10 out of 12 publications