The central hypothesis of this Center posits that a distinctive pattern of molecular alterations in subsets of GABA neurons gives rise to disturbances in cortical network oscillations that underlie the information processing deficits of schizophrenia. Disturbances in markers of cortical GABA neurotransmission are common in schizophrenia and are most prominent in two types of GABA neurons: parvalbumin-positive (PV), fast-spiking neurons and somatostatin-positive (SST), low-threshold spiking neurons. PV and SST cells each form networks with neurons of the same type that are thought to play central roles in the generation of gamma (30-80 Hz) and theta (4-7 Hz) oscillations, respectively, both of which are disturbed in subjects with schizophrenia. Network oscillations depend, at least in part, on 3 physiological properties: 1) the strength [i.e., inhibitory post-synaptic current (IPSC) amplitude] of GABA neurotransmission as determined by both pre- and post-synaptic factors;2) the kinetics (i.e., IPSC duration) of GABA neurotransmission as determined principally by the subunit composition of post-synaptic GABA-A receptors;and 3) the nature of the resulting inhibition (i.e., shunting or hyperpolarizing) as determined by chloride ion flow when GABA-A receptors are activated. Each of these physiological features is, in turn, dependent upon the expression of particular sets of gene products. Consequently, we hypothesize that the alterations in gamma and theta oscillations in schizophrenia reflect cell type-specific disturbances in the gene products that influence the strength, kinetics or nature of GABA-mediated inhibition. Studies in postmortem human brain, using the dorsolateral prefrontal cortex (DLPFC) as a prototypic cortical region affected in schizophrenia, will be conducted to determine if 1) the presynaptic strength of GABA neurotransmission in schizophrenia is impaired due to deficits in the amount of GAD67 protein available to synthesize GABA in PV and SST neurons;2) if cell type-specific alterations in the expression of a1 and a2 GABA-A receptor subunits disrupt the kinetics of GABA neurotransmission in schizophrenia;and 3) if shifts in the expression of chloride transporters in schizophrenia disrupt the shunting inhibitory input to GABA neurons and/or the hyperpolarizing inhibitory input to pyramidal cells required for robust oscillations. The proposed studies are both methodologically and conceptually innovative, and these investigations depend upon and inform the studies proposed in other projects in this Center. Thus, the outcomes of the proposed studies are likely to be highly informative regarding both the disease mechanisms underlying oscillatory and information processing deficits in schizophrenia and in identifying novel molecular targets for treating these deficits.

National Institute of Health (NIH)
National Institute of Mental Health (NIMH)
Specialized Center (P50)
Project #
Application #
Study Section
Special Emphasis Panel (ZMH1-ERB-S)
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
University of Pittsburgh
United States
Zip Code
Kimoto, Sohei; Glausier, Jill R; Fish, Kenneth N et al. (2016) Reciprocal Alterations in Regulator of G Protein Signaling 4 and microRNA16 in Schizophrenia. Schizophr Bull 42:396-405
Lewis, David A; Glausier, Jill R (2016) Alterations in Prefrontal Cortical Circuitry and Cognitive Dysfunction in Schizophrenia. Nebr Symp Motiv 63:31-75
Fromer, Menachem; Roussos, Panos; Sieberts, Solveig K et al. (2016) Gene expression elucidates functional impact of polygenic risk for schizophrenia. Nat Neurosci 19:1442-1453
Lizano, Paulo L; Keshavan, Matcheri S; Tandon, Neeraj et al. (2016) Angiogenic and immune signatures in plasma of young relatives at familial high-risk for psychosis and first-episode patients: A preliminary study. Schizophr Res 170:115-22
Teel, Chen; Park, Taeyoung; Sampson, Allan R (2015) EM Estimation for Finite Mixture Models with Known Mixture Component Size. Commun Stat Simul Comput 44:1545-1556
Kimoto, Sohei; Zaki, Mark M; Bazmi, H Holly et al. (2015) Altered Markers of Cortical γ-Aminobutyric Acid Neuronal Activity in Schizophrenia: Role of the NARP Gene. JAMA Psychiatry 72:747-56
Crowder, Erin A; Olson, Carl R (2015) Macaque monkeys experience visual crowding. J Vis 15:14
Frankle, W Gordon; Cho, Raymond Y; Prasad, Konasale M et al. (2015) In vivo measurement of GABA transmission in healthy subjects and schizophrenia patients. Am J Psychiatry 172:1148-59
Hoftman, Gil D; Volk, David W; Bazmi, H Holly et al. (2015) Altered cortical expression of GABA-related genes in schizophrenia: illness progression vs developmental disturbance. Schizophr Bull 41:180-91
Cho, Raymond Y; Walker, Christopher P; Polizzotto, Nicola R et al. (2015) Development of sensory gamma oscillations and cross-frequency coupling from childhood to early adulthood. Cereb Cortex 25:1509-18

Showing the most recent 10 out of 92 publications