This project based at UCSD will develop and refine new experimental paradigms for assessing the neural basis of sensory processing and attentional mechanisms in the human brain. The primary approach will involve non-invasive electrophysiological recordings of EEG and event-related brain activity from the intact scalp, with converging data from fMRI to be obtained in some experiments. This paradigm development and testing will be carried out at first in normal subjects with the aim of subsequently applying them to the study of sensory and attentional deficits in schizophrenia patients. These experiments will be closely coordinated with parallel studies in monkeys and in schizophrenia patients carried out by other projects in the proposed Conte Center. More specifically, this project will investigate: (1) the role of EEG oscillations of oscillatory hierarchies in selective attention, (2) the neural mechanisms of attention to stimuli that are processed by the magnocellular and parvocellular visual pathways and (3) the neural mechanisms of attention to multifeature objects composed of high and low spatial frequencies. These critical processes of selective attention are likely to be disrupted in schizophrenia patients in association with their early sensory deficits and diminished functional brain connectivity. This approach is innovative in that the results of experiments in norrnal humans will be continually compared with the results of parallel studies in monkeys and in psychiatric patients, which will allow for broader and more incisive interpretations of the emerging data and will permit ongoing design modifications for follow-up studies.

Public Health Relevance

Schizophrenia is a devastating disease that significantly impacts the public health system. Understanding the basic brain mechanisms that underlie this disorder is an important and necessary step towards gaining a more complete understanding of the disease and may lead to improved treatment strategies

Agency
National Institute of Health (NIH)
Institute
National Institute of Mental Health (NIMH)
Type
Specialized Center (P50)
Project #
5P50MH086385-05
Application #
8502373
Study Section
Special Emphasis Panel (ZMH1-ERB-F)
Project Start
Project End
Budget Start
2013-07-01
Budget End
2014-06-30
Support Year
5
Fiscal Year
2013
Total Cost
$182,561
Indirect Cost
Name
Columbia University (N.Y.)
Department
Type
DUNS #
621889815
City
New York
State
NY
Country
United States
Zip Code
10032
Hillyard, Steven A; Störmer, Viola S; Feng, Wenfeng et al. (2016) Cross-modal orienting of visual attention. Neuropsychologia 83:170-8
Smiley, John F; Hackett, Troy A; Bleiwas, Cynthia et al. (2016) Reduced GABA neuron density in auditory cerebral cortex of subjects with major depressive disorder. J Chem Neuroanat 76:108-121
Sershen, Henry; Hashim, Audrey; Dunlop, David S et al. (2016) Modulating NMDA Receptor Function with D-Amino Acid Oxidase Inhibitors: Understanding Functional Activity in PCP-Treated Mouse Model. Neurochem Res 41:398-408
Kantrowitz, Joshua T; Hoptman, Matthew J; Leitman, David I et al. (2015) Neural Substrates of Auditory Emotion Recognition Deficits in Schizophrenia. J Neurosci 35:14909-21
Javitt, Daniel C (2015) Current and emergent treatments for symptoms and neurocognitive impairment in schizophrenia. Curr Treat Options Psychiatry 1:107-120
Haegens, Saskia; Barczak, Annamaria; Musacchia, Gabriella et al. (2015) Laminar Profile and Physiology of the α Rhythm in Primary Visual, Auditory, and Somatosensory Regions of Neocortex. J Neurosci 35:14341-52
Javitt, Daniel C; Freedman, Robert (2015) Sensory processing dysfunction in the personal experience and neuronal machinery of schizophrenia. Am J Psychiatry 172:17-31
Carrión, Ricardo E; Cornblatt, Barbara A; McLaughlin, Danielle et al. (2015) Contributions of early cortical processing and reading ability to functional status in individuals at clinical high risk for psychosis. Schizophr Res 164:1-7
Brang, David; Towle, Vernon L; Suzuki, Satoru et al. (2015) Peripheral sounds rapidly activate visual cortex: evidence from electrocorticography. J Neurophysiol 114:3023-8
Smiley, John F; Saito, Mariko; Bleiwas, Cynthia et al. (2015) Selective reduction of cerebral cortex GABA neurons in a late gestation model of fetal alcohol spectrum disorder. Alcohol 49:571-80

Showing the most recent 10 out of 81 publications