This project based at UCSD will develop and refine new experimental paradigms for assessing the neural basis of sensory processing and attentional mechanisms in the human brain. The primary approach will involve non-invasive electrophysiological recordings of EEG and event-related brain activity from the intact scalp, with converging data from fMRI to be obtained in some experiments. This paradigm development and testing will be carried out at first in normal subjects with the aim of subsequently applying them to the study of sensory and attentional deficits in schizophrenia patients. These experiments will be closely coordinated with parallel studies in monkeys and in schizophrenia patients carried out by other projects in the proposed Conte Center. More specifically, this project will investigate: (1) the role of EEG oscillations of oscillatory hierarchies in selective attention, (2) the neural mechanisms of attention to stimuli that are processed by the magnocellular and parvocellular visual pathways and (3) the neural mechanisms of attention to multifeature objects composed of high and low spatial frequencies. These critical processes of selective attention are likely to be disrupted in schizophrenia patients in association with their early sensory deficits and diminished functional brain connectivity. This approach is innovative in that the results of experiments in norrnal humans will be continually compared with the results of parallel studies in monkeys and in psychiatric patients, which will allow for broader and more incisive interpretations of the emerging data and will permit ongoing design modifications for follow-up studies.

Public Health Relevance

Schizophrenia is a devastating disease that significantly impacts the public health system. Understanding the basic brain mechanisms that underlie this disorder is an important and necessary step towards gaining a more complete understanding of the disease and may lead to improved treatment strategies

Agency
National Institute of Health (NIH)
Institute
National Institute of Mental Health (NIMH)
Type
Specialized Center (P50)
Project #
5P50MH086385-05
Application #
8502373
Study Section
Special Emphasis Panel (ZMH1-ERB-F)
Project Start
Project End
Budget Start
2013-07-01
Budget End
2014-06-30
Support Year
5
Fiscal Year
2013
Total Cost
$182,561
Indirect Cost
Name
Columbia University (N.Y.)
Department
Type
DUNS #
621889815
City
New York
State
NY
Country
United States
Zip Code
10032
Ding, Yulong; Martinez, Antigona; Qu, Zhe et al. (2014) Earliest stages of visual cortical processing are not modified by attentional load. Hum Brain Mapp 35:3008-24
Brunoni, Andre R; Shiozawa, Pedro; Truong, Dennis et al. (2014) Understanding tDCS effects in schizophrenia: a systematic review of clinical data and an integrated computation modeling analysis. Expert Rev Med Devices 11:383-94
Pitts, Michael A; Padwal, Jennifer; Fennelly, Daniel et al. (2014) Gamma band activity and the P3 reflect post-perceptual processes, not visual awareness. Neuroimage 101:337-50
Merkel, Christian; Stoppel, Christian M; Hillyard, Steven A et al. (2014) Spatio-temporal patterns of brain activity distinguish strategies of multiple-object tracking. J Cogn Neurosci 26:28-40
Revheim, Nadine; Corcoran, Cheryl M; Dias, Elisa et al. (2014) Reading deficits in schizophrenia and individuals at high clinical risk: relationship to sensory function, course of illness, and psychosocial outcome. Am J Psychiatry 171:949-59
Schoenfeld, Mircea A; Hopf, Jens-Max; Merkel, Christian et al. (2014) Object-based attention involves the sequential activation of feature-specific cortical modules. Nat Neurosci 17:619-24
Gill, Kelly Elizabeth; Evans, Elizabeth; Kayser, Jürgen et al. (2014) Smell identification in individuals at clinical high risk for schizophrenia. Psychiatry Res 220:201-4
Feng, Wenfeng; Störmer, Viola S; Martinez, Antigona et al. (2014) Sounds activate visual cortex and improve visual discrimination. J Neurosci 34:9817-24
Hoptman, Matthew J; Antonius, Daniel; Mauro, Cristina J et al. (2014) Cortical thinning, functional connectivity, and mood-related impulsivity in schizophrenia: relationship to aggressive attitudes and behavior. Am J Psychiatry 171:939-48
Kantrowitz, J T; Hoptman, M J; Leitman, D I et al. (2014) The 5% difference: early sensory processing predicts sarcasm perception in schizophrenia and schizo-affective disorder. Psychol Med 44:25-36

Showing the most recent 10 out of 47 publications