This project will develop a shared computational model to identify unified mechanisms for interactions of the prefrontal cortex (PFC) and medial temporal lobe cortex (MTL) in the performance of a behavioral task requiring cued responses based on context.
The specific aims focus on modeling the properties of timing of neural spiking activity in PFC and MTL during performance of related behavioral tasks in rodents in Project 4-5, and on the properties of neural spiking in monkeys in Project 3 and the magnitude of functional magnetic resonance imaging (fMRI) activity in humans in Projects 1-2. In addition, the specific aims will address the effect of the damage to different cortical regions on behavioral performance and measures of neural activity. Based on previous models from this lab, network models of integrate-and-fire neurons or biophysical compartmental simulations representing subregions of the PFC and MTL will be used to generate predictions about experimental data that will guide data analysis, and comparison with the data will determine whether features of the shared model are retained or restructured to account for the data. Modeling predictions will address relative timing of unit activity between regions and timing relative to network oscillations in Projects 4-5, and experimental outcomes will guide selection of neural mechanisms for representation of context, such as oscillatory interference or the temporal context model. Models will generate predictions about the relative timing of unit activity in monkeys in Project 3, and the magnitude of fMRI activity and patterns of preferential viewing in humans in Projects 1 and 2 before and after the transition to context-based responding, and during inferences to cues presented in novel quadrants. The outcomes of these comparisons to data will guide extension of the model to address human and monkey PFC-MTL interactions in relation to rodents.

Public Health Relevance

Impairments of PFC function are implicated in mental disorders, including schizophrenia and depression, and these disorders are also associated with pathological changes in the MTL. Modeling PFC-MTL interactions between provides a theoretical framework for addressing pathological changes in these interactions that contribute to the progression of degenerative mental disorders.

Agency
National Institute of Health (NIH)
Institute
National Institute of Mental Health (NIMH)
Type
Specialized Center (P50)
Project #
5P50MH094263-04
Application #
8735996
Study Section
Special Emphasis Panel (ZMH1-ERB-S)
Project Start
Project End
Budget Start
2014-07-01
Budget End
2015-06-30
Support Year
4
Fiscal Year
2014
Total Cost
$209,806
Indirect Cost
$45,173
Name
Boston University
Department
Type
DUNS #
049435266
City
Boston
State
MA
Country
United States
Zip Code
02215
Voss, Joel L; Cohen, Neal J (2017) Hippocampal-cortical contributions to strategic exploration during perceptual discrimination. Hippocampus 27:642-652
Eichenbaum, Howard (2017) Memory: Organization and Control. Annu Rev Psychol 68:19-45
Nilakantan, Aneesha S; Bridge, Donna J; Gagnon, Elise P et al. (2017) Stimulation of the Posterior Cortical-Hippocampal Network Enhances Precision of Memory Recollection. Curr Biol 27:465-470
Riceberg, Justin S; Shapiro, Matthew L (2017) Orbitofrontal Cortex Signals Expected Outcomes with Predictive Codes When Stable Contingencies Promote the Integration of Reward History. J Neurosci 37:2010-2021
Seip-Cammack, Katharine M; Young, James J; Young, Megan E et al. (2017) Partial lesion of the nigrostriatal dopamine pathway in rats impairs egocentric learning but not spatial learning or behavioral flexibility. Behav Neurosci 131:135-42
Guise, Kevin G; Shapiro, Matthew L (2017) Medial Prefrontal Cortex Reduces Memory Interference by Modifying Hippocampal Encoding. Neuron 94:183-192.e8
Stratton, Peter; Hasselmo, Michael; Milford, Michael (2016) Unlocking neural complexity with a robotic key. J Physiol 594:6559-6567
Eichenbaum, Howard (2016) Still searching for the engram. Learn Behav 44:209-22
Ryals, Anthony J; Rogers, Lynn M; Gross, Evan Z et al. (2016) Associative Recognition Memory Awareness Improved by Theta-Burst Stimulation of Frontopolar Cortex. Cereb Cortex 26:1200-1210
Keene, Christopher S; Bladon, John; McKenzie, Sam et al. (2016) Complementary Functional Organization of Neuronal Activity Patterns in the Perirhinal, Lateral Entorhinal, and Medial Entorhinal Cortices. J Neurosci 36:3660-75

Showing the most recent 10 out of 64 publications