This core will provide integrative services for administration, human resources, and data analysis. For administration, this core will have the following roles: 1) provision of a centralized administrative facility for the entire center, including financial administration, organization of human and animal subject protocols, and coordination of research meetings inside this center;2) scientific leadership to the entire center by organizing scientific issues towards uniform goals, coordinating collaborative research and material exchange with investigators outside the center (resource/data sharing), and communicating with advisory committees and board;3) training programs for young investigators and a summer undergraduate course;and 4) public outreach for both lay persons and scientific peers outside of the center. For human resources, this core will connect two established groups keeping world-class repositories of human genetic and tissue samples together with detailed clinical data. For data analyses, this core will provide consultation for experiments and data analyses, including microarray studies (gene expression profiling) and genetic sequencing. These data will be centrally analyzed together with currently available datasets in human tissue/genetic resources. This core will closely work with Core B for overall data analysis. Finally, this core will provide services for database production.

Public Health Relevance

To achieve a multifaceted and translational approach we propose the integration of well-established repositories of human genetic and tissue samples with several hypotheses-driven preclinical projects. In addition, a central structure that can also link to a well established animal behavioral facility (Core B) is proposed.

Agency
National Institute of Health (NIH)
Institute
National Institute of Mental Health (NIMH)
Type
Specialized Center (P50)
Project #
5P50MH094268-04
Application #
8681530
Study Section
Special Emphasis Panel (ZMH1)
Project Start
Project End
Budget Start
2014-07-01
Budget End
2015-06-30
Support Year
4
Fiscal Year
2014
Total Cost
Indirect Cost
Name
Johns Hopkins University
Department
Type
DUNS #
City
Baltimore
State
MD
Country
United States
Zip Code
21218
Prandovszky, Emese; Li, Ye; Sabunciyan, Sarven et al. (2018) Toxoplasma gondii-Induced Long-Term Changes in the Upper Intestinal Microflora during the Chronic Stage of Infection. Scientifica (Cairo) 2018:2308619
Sumitomo, Akiko; Saka, Ayumi; Ueta, Keisho et al. (2018) Methylphenidate and Guanfacine Ameliorate ADHD-Like Phenotypes in Fez1-Deficient Mice. Mol Neuropsychiatry 3:223-233
Weber, Natalya S; Gressitt, Kristin L; Cowan, David N et al. (2018) Monocyte activation detected prior to a diagnosis of schizophrenia in the US Military New Onset Psychosis Project (MNOPP). Schizophr Res :
Torniainen-Holm, Minna; Suvisaari, Jaana; Lindgren, Maija et al. (2018) Association of cytomegalovirus and Epstein-Barr virus with cognitive functioning and risk of dementia in the general population: 11-year follow-up study. Brain Behav Immun 69:480-485
Li, Ye; Viscidi, Raphael P; Kannan, Geetha et al. (2018) Chronic Toxoplasma gondii Infection Induces Anti-N-Methyl-d-Aspartate Receptor Autoantibodies and Associated Behavioral Changes and Neuropathology. Infect Immun 86:
Lindgren, Maija; Torniainen-Holm, Minna; Härkänen, Tommi et al. (2018) The association between toxoplasma and the psychosis continuum in a general population setting. Schizophr Res 193:329-335
Sedlak, Thomas W; Nucifora, Leslie G; Koga, Minori et al. (2018) Sulforaphane Augments Glutathione and Influences Brain Metabolites in Human Subjects: A Clinical Pilot Study. Mol Neuropsychiatry 3:214-222
McFarland, Ross; Wang, Zi Teng; Jouroukhin, Yan et al. (2018) AAH2 gene is not required for dopamine-dependent neurochemical and behavioral abnormalities produced by Toxoplasma infection in mouse. Behav Brain Res 347:193-200
Severance, Emily G; Yolken, Robert H (2018) Deciphering microbiome and neuroactive immune gene interactions in schizophrenia. Neurobiol Dis :
Sumitomo, Akiko; Yukitake, Hiroshi; Hirai, Kazuko et al. (2018) Ulk2 controls cortical excitatory-inhibitory balance via autophagic regulation of p62 and GABAA receptor trafficking in pyramidal neurons. Hum Mol Genet 27:3165-3176

Showing the most recent 10 out of 190 publications