The objective of this new Conte Center is to take maximal advantage of recent advances in chromatin biology, so-called epigenetics, to fundamentally increase our understanding of the long-lasting abnormalities in the brain that cause depression and that mediate antidepressant responses. Our work will focus on key limbic brain regions, nucleus accumbens (NAc) and several areas of prefrontal cortex (PFC), which have been implicated directly in the control of mood in health and disease. The Center is composed of four Projects at four different universities. The four PIs, Eric Nestler (Mount Sinai), Schahram Akbarian (UMass), David Allis (Rockefeller), and Carol Tamminga (UT Southwestern), are leaders in their fields who have an established history of effective collaboration and will use their complementary expertise and approaches to chart a multidisciplinary course in the proposed research. Projects 1, 2, and 3, lead by Drs. Nestler, Akbarian, and Allis, respectively, will characterize the role of epigenetic mechanisms within the brain's limbic regions in a range of animal models of depression over the life cycle of the animals. Project 4, lead by Dr. Tamminga, will translate these findings in animals to human postmortem brain tissue and thereby provide essential validation of the basic research for human depression. The Center is supported by three Cores, an Administrative Core to oversee and coordinate the Center's operations;a Chromatin and Gene Analysis Core to provide advanced state-of-the-art methods and bioinformatics to characterize genome-wide regulation of chromatin modifications in limbic regions in depression and antidepressant action;and an Animal Models Core to provide the most sophisticated animal models of depression along with the advanced tools (viral-mediated gene transfer and inducible mutations in mice) to manipulate individual genes of interest within limbic structures and thereby provide causal evidence for the involvement of epigenetic regulation in depression-related phenomena. We are very excited about this novel and pioneering investigation of the epigenetic underpinnings of depression, which we believe will help drive the field toward dramatically better treatments and diagnostic tests for depression and other stress-related illnesses. PUBLIC HEALTH REVELENCE: Depression has a lifetime risk of ~15% for the U.S. general population, yet available antidepressant therapies are based on serendipitous discoveries over 6 decades ago, and fully treat <50% of all affected individuals. An improved understanding of the molecular basis of depression will lead to improved treatments and diagnostic tests - a high priority for the National Institutes of Health.

Agency
National Institute of Health (NIH)
Institute
National Institute of Mental Health (NIMH)
Type
Specialized Center (P50)
Project #
5P50MH096890-03
Application #
8672680
Study Section
Special Emphasis Panel (ZMH1)
Program Officer
Zalcman, Steven J
Project Start
2012-05-01
Project End
2017-04-30
Budget Start
2014-05-01
Budget End
2015-04-30
Support Year
3
Fiscal Year
2014
Total Cost
Indirect Cost
Name
Icahn School of Medicine at Mount Sinai
Department
Neurosciences
Type
Schools of Medicine
DUNS #
City
New York
State
NY
Country
United States
Zip Code
10029
Mitchell, A C; Javidfar, B; Pothula, V et al. (2018) MEF2C transcription factor is associated with the genetic and epigenetic risk architecture of schizophrenia and improves cognition in mice. Mol Psychiatry 23:123-132
Hamilton, Peter J; Lim, Carissa J; Nestler, Eric J et al. (2018) Viral Expression of Epigenome Editing Tools in Rodent Brain Using Stereotaxic Surgery Techniques. Methods Mol Biol 1767:205-214
Hamilton, Peter J; Lim, Carissa J; Nestler, Eric J et al. (2018) Neuroepigenetic Editing. Methods Mol Biol 1767:113-136
Gandal, Michael J; Haney, Jillian R; Parikshak, Neelroop N et al. (2018) Shared molecular neuropathology across major psychiatric disorders parallels polygenic overlap. Science 359:693-697
Heshmati, Mitra; Aleyasin, Hossein; Menard, Caroline et al. (2018) Cell-type-specific role for nucleus accumbens neuroligin-2 in depression and stress susceptibility. Proc Natl Acad Sci U S A 115:1111-1116
Wang, Jun; Hodes, Georgia E; Zhang, Hongxing et al. (2018) Epigenetic modulation of inflammation and synaptic plasticity promotes resilience against stress in mice. Nat Commun 9:477
Akil, Huda; Gordon, Joshua; Hen, Rene et al. (2018) Treatment resistant depression: A multi-scale, systems biology approach. Neurosci Biobehav Rev 84:272-288
Peña, Catherine J; Nestler, Eric J (2018) Progress in Epigenetics of Depression. Prog Mol Biol Transl Sci 157:41-66
Mul, Joram D; Soto, Marion; Cahill, Michael E et al. (2018) Voluntary wheel running promotes resilience to chronic social defeat stress in mice: a role for nucleus accumbens ?FosB. Neuropsychopharmacology 43:1934-1942
Gonzalez, Robert; Suppes, Trisha; Zeitzer, Jamie et al. (2018) The association between mood state and chronobiological characteristics in bipolar I disorder: a naturalistic, variable cluster analysis-based study. Int J Bipolar Disord 6:5

Showing the most recent 10 out of 215 publications