Early life 5-HT signaling influences neurodevelopmental trajectories and altered 5-HT signaling has been implicated in the pathogenesis of numerous stress-related psychiatric disorders. What is not clear is how extracellular 5-HT exerts its effects on nervous system development and whether the critical synthetic source of 5-HT is the brain. In Project 1: Early Brain Serotonin and its Lasting Impact on Neuronal Epigenetic Programming, Evan Deneris seeks to determine whether 5-HT synthesized specifically in hindbrain raphe neurons and secreted during fetal and early postnatal life is an important extracellular signal required for early-life epigenetic programming of serotonergic homeostasis and hypothalamic-pituitary-adrenal (HPA) axis stress circuitry. To investigate this hypothesis, Deneris seeks to apply his recently developed temporally controlled targeting approaches to knock out the gene, tryptophan hydroxylase 2, responsible for synthesis of brain 5-HT. Tph2 will be targeted during fetal and early postnatal life to reduce brain 5-HT synthesis but not synthesis of 5-HT from exogenous sources such as the placental or gut. The targeting of Tph2 at different stages of early life enables Deneris to investigate a series of questions that have been difficult or impossible to address with previous approaches aimed at determining the developmental impact of brain 5 HT synthesis.
In Specific Aim 1, Deneris will target Tph2 during fetal life and during the critical early postnatal period to investigate a potential role for 5-HT as an autocrine signal required for homeostatic maintenance of intrinsic 5-HT neuron transcriptional programs, intrinsic 5-HT neuron biochemical and physiological properties and RNA editing patterns.
In Specific Aim 2, Deneris seeks to initiate a novel study of the previously unexplored serotonergic epigenome and determine how it impacts stress-related behaviors. Tph2 targeted mice will be used to determine the impact of early-life 5-HT on long lasting programming of histone acetylation/methylation marks and DNA promoter methylation patterns in serotonergic genes and serotonergic histone deacetylase (HDAC) expression. 5-HT neuron-type targeting of HDAC2, an HDAC strongly expressed in developing 5-HT neurons, will be used to determine how alterations in the serotonergic epigenome impacts 5-HT neuron function and stress-related behaviors.
In Specific Aim 3, Deneris'team will utilize his powerful 5-HT neuron-type genetic strategies to directly test the long standing hypothesis that 5 HT produced in the brain is a developmental transducer of early life experience and is required to epigenetically program development of the HPA axis and protect against the effects of early life stress.

Public Health Relevance

Early life 5-HT signaling is thought to interact with exposure to stress related environmental factors to epigenetically program adolescent and adult emotional reactivity. Our research is aimed at determining the impact of fetal and early postnatal 5-HT, produced specifically in the brain, in the epigenetic programming of 5-HT neuron homeostasis and HPA axis development. Our hypothesis is that alterations in this layer of gene regulation is influenced by 5-HT and is involved in the pathogenesis of stress-related psychiatric disorders.

National Institute of Health (NIH)
Specialized Center (P50)
Project #
Application #
Study Section
Special Emphasis Panel (ZMH1)
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
Vanderbilt University Medical Center
United States
Zip Code
Ulbricht, Randi J; Emeson, Ronald B (2014) One hundred million adenosine-to-inosine RNA editing sites: hearing through the noise. Bioessays 36:730-5
Ciarleglio, Christopher M; Resuehr, Holly E S; Axley, John C et al. (2014) Pet-1 deficiency alters the circadian clock and its temporal organization of behavior. PLoS One 9:e97412
Jackson, Chad R; Capozzi, Megan; Dai, Heng et al. (2014) Circadian perinatal photoperiod has enduring effects on retinal dopamine and visual function. J Neurosci 34:4627-33
Hood, Jennifer L; Morabito, Michael V; Martinez 3rd, Charles R et al. (2014) Reovirus-mediated induction of ADAR1 (p150) minimally alters RNA editing patterns in discrete brain regions. Mol Cell Neurosci 61:97-109
Spoida, Katharina; Masseck, Olivia A; Deneris, Evan S et al. (2014) Gq/5-HT2c receptor signals activate a local GABAergic inhibitory feedback circuit to modulate serotonergic firing and anxiety in mice. Proc Natl Acad Sci U S A 111:6479-84
Ye, R; Carneiro, A M D; Airey, D et al. (2014) Evaluation of heritable determinants of blood and brain serotonin homeostasis using recombinant inbred mice. Genes Brain Behav 13:247-60
Anastasio, Noelle C; Stutz, Sonja J; Fox, Robert G et al. (2014) Functional status of the serotonin 5-HT2C receptor (5-HT2CR) drives interlocked phenotypes that precipitate relapse-like behaviors in cocaine dependence. Neuropsychopharmacology 39:370-82
Deneris, Evan S; Hobert, Oliver (2014) Maintenance of postmitotic neuronal cell identity. Nat Neurosci 17:899-907
Shi, Zhiao; Wang, Jing; Zhang, Bing (2013) NetGestalt: integrating multidimensional omics data over biological networks. Nat Methods 10:597-8
Wu, Hsiao-Huei; Levitt, Pat (2013) Prenatal expression of MET receptor tyrosine kinase in the fetal mouse dorsal raphe nuclei and the visceral motor/sensory brainstem. Dev Neurosci 35:1-16

Showing the most recent 10 out of 11 publications