Behavioral evidence across species suggests that oxytocin plays a general role in many aspects of social cognition, yet the neurobiological substrates through which it acts at the neural circuit level are not fully understood. An intriguing but untested idea is that centrally released oxytocin acting on limbic brain regions allows for the neural processing of social cues to gate activity in areas involved in seeking reward, thus facilitating the motivation to socially interact and the reinforcement of conspecific cues. Our long-term goal is to elucidate how oxytocin modulates the oxytocin receptor rich regions underlying social information processing and reward to enhance social cognition. The objective here is to record from chronic electrode implants within these regions during social behavioral paradigms in rodents. Our central hypothesis is that the motivation to interact socially is determined by a balance between positive and negative valence cues, and that oxytocin acts to enhance how positive valence cues and/or suppress how negative valence cues modulate the functional neural connections between cue and reward processing areas, helping to reinforce their encoding. The rationale for our proposal is that, once we know how oxytocin affects functional connectivity between these areas in natural social contexts, our improved knowledge about oxytocin's sites of action will enable direct manipulation of these circuits to enhance prosocial behavior. Two complementary specific aims in two different rodent models will be pursued, each chosen to maximize our ability to deduce the electrophysiological effects of either oxytocin loss of function (Aim 1) or gain of function (Aim 2) during social interactions. Our proposal's significance lies in the fact that it will implicate a specific central limbic circuit in mediating oxytocin's role in facilitating social motivation and socially reinforced learning. The combination of in vivo electrophysiology with oxytocin manipulation in freely moving, socially interacting rodents is an innovation that will enable key questions to be addressed about how real-time neural activity within limbic circuits is dynamically modulated by oxytocin in natural social interactions.

Public Health Relevance

The proposed research is relevant to public health because intranasal oxytocin is now in clinical trials as a treatment for ameliorating social dysfunctions in several mental health disorders, even though our understanding of how oxytocin works in the brain to promote social cognition is not yet fully elucidated. Thus, this research will elucidate basic mechanisms to help enable better treatments for social deficits.

National Institute of Health (NIH)
National Institute of Mental Health (NIMH)
Specialized Center (P50)
Project #
Application #
Study Section
Special Emphasis Panel (ZMH1-ERB-L (02))
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
Emory University
United States
Zip Code
Numan, Michael; Young, Larry J (2016) Neural mechanisms of mother-infant bonding and pair bonding: Similarities, differences, and broader implications. Horm Behav 77:98-112
Andari, Elissar (2016) The Need for a Theoretical Framework of Social Functioning to Optimize Targeted Therapies in Psychiatric Disorders. Biol Psychiatry 79:e5-7
Burkett, J P; Andari, E; Johnson, Z V et al. (2016) Oxytocin-dependent consolation behavior in rodents. Science 351:375-8
Ballesta, Sébastien; Mosher, Clayton P; Szep, Jeno et al. (2016) Social determinants of eyeblinks in adult male macaques. Sci Rep 6:38686
Arai, Aki; Hirota, Yu; Miyase, Naoki et al. (2016) A single prolonged stress paradigm produces enduring impairments in social bonding in monogamous prairie voles. Behav Brain Res 315:83-93
Shamay-Tsoory, Simone; Young, Larry J (2016) Understanding the Oxytocin System and Its Relevance to Psychiatry. Biol Psychiatry 79:150-2
Johnson, Zachary V; Walum, Hasse; Jamal, Yaseen A et al. (2016) Central oxytocin receptors mediate mating-induced partner preferences and enhance correlated activation across forebrain nuclei in male prairie voles. Horm Behav 79:8-17
Putnam, P T; Roman, J M; Zimmerman, P E et al. (2016) Oxytocin enhances gaze-following responses to videos of natural social behavior in adult male rhesus monkeys. Psychoneuroendocrinology 72:47-53
King, Lanikea B; Walum, Hasse; Inoue, Kiyoshi et al. (2016) Variation in the Oxytocin Receptor Gene Predicts Brain Region-Specific Expression and Social Attachment. Biol Psychiatry 80:160-9
Mosher, Clayton P; Zimmerman, Prisca E; Fuglevand, Andrew J et al. (2016) Tactile Stimulation of the Face and the Production of Facial Expressions Activate Neurons in the Primate Amygdala. eNeuro 3:

Showing the most recent 10 out of 34 publications