This grant application seeks continued funding for the Head Injury Research Center at the University of Pennsylvania, a Center now in its 23rd year of existence. During that time, the research has become focused on TRAUMATIC AXONAL DAMAGE (TAD), an important focus of dysfunction in human brain injury, and, thus, TAD is the overall theme of the Center. TAD occurs in various forms in well over half of all fatal injuries examined pathologically and in a pure form, as diffuse axonal injury (DAI), in one-third of severely brain injured humans. To understand the pathophysiology of TAD better, this application proposes the use of state-of-the-art neuroimaging, spectroscopy, electron microscopy, immunohistochemical and molecular biologic methods in a coordinated research effort involving five projects. The first two projects utilize magnetic resonance transfer imaging (MTI) and spectroscopy (MRS) to determine non-invasively longitudinal changes in structure and in-vivo biochemistry of traumatic white matter abnormalities in experimental DAI and humans, respectively, and will combine these into methods to diagnose TAD clinically. A third project characterizes changes in expression of immediate early genes (IEG), stress proteins, target genes of the IEGs and neurotransmitters in models of TAD in order to determine the influence of genomic changes on responses to injury. A fourth project uses experimental models of TAD to determine efficacy of novel neuroprotective compounds targeted at receptor or cytoskeletal dysfunction in mitigating TAD. Two essential core activities support the Projects. Core A provides administrative activities, biostatistical support, patient database maintenance and evaluation of new outcome tools. Core B provides bioengineering support, designs improved models with higher fidelity in replicating human brain injury, and quantifies the relationships between experimental models and human injuries. Theses studies will further our understanding of the pathophysiology of brain injury and will lead to the development of novel and improved therapies for the treatment of brain injured patients.

Agency
National Institute of Health (NIH)
Institute
National Institute of Neurological Disorders and Stroke (NINDS)
Type
Specialized Center (P50)
Project #
5P50NS008803-26
Application #
2460471
Study Section
Special Emphasis Panel (SRC (05))
Program Officer
Cheung, Mary Ellen
Project Start
1976-08-01
Project End
1999-07-31
Budget Start
1997-08-01
Budget End
1998-07-31
Support Year
26
Fiscal Year
1997
Total Cost
Indirect Cost
Name
University of Pennsylvania
Department
Surgery
Type
Schools of Medicine
DUNS #
042250712
City
Philadelphia
State
PA
Country
United States
Zip Code
19104
Nariai, Hiroki; Duberstein, Susan; Shinnar, Shlomo (2018) Treatment of Epileptic Encephalopathies: Current State of the Art. J Child Neurol 33:41-54
Nariai, Hiroki; Beal, Jules; Galanopoulou, Aristea S et al. (2017) Scalp EEG Ictal gamma and beta activity during infantile spasms: Evidence of focality. Epilepsia 58:882-892
Tomasevic, Gregor; Laurer, Helmut L; Mattiasson, Gustav et al. (2012) Delayed neuromotor recovery and increased memory acquisition dysfunction following experimental brain trauma in mice lacking the DNA repair gene XPA. J Neurosurg 116:1368-78
Browne, Kevin D; Chen, Xiao-Han; Meaney, David F et al. (2011) Mild traumatic brain injury and diffuse axonal injury in swine. J Neurotrauma 28:1747-55
Tomasevic, Gregor; Raghupathi, Ramesh; Scherbel, Uwe et al. (2010) Deletion of the p53 tumor suppressor gene improves neuromotor function but does not attenuate regional neuronal cell loss following experimental brain trauma in mice. J Neurosci Res 88:3414-23
Hånell, Anders; Clausen, Fredrik; Björk, Maria et al. (2010) Genetic deletion and pharmacological inhibition of Nogo-66 receptor impairs cognitive outcome after traumatic brain injury in mice. J Neurotrauma 27:1297-309
Marklund, N; Morales, D; Clausen, F et al. (2009) Functional outcome is impaired following traumatic brain injury in aging Nogo-A/B-deficient mice. Neuroscience 163:540-51
Marklund, Niklas; Bareyre, Florence M; Royo, Nicolas C et al. (2007) Cognitive outcome following brain injury and treatment with an inhibitor of Nogo-A in association with an attenuated downregulation of hippocampal growth-associated protein-43 expression. J Neurosurg 107:844-53
Keck, Carrie A; Thompson, Hilaire J; Pitkanen, Asla et al. (2007) The novel antiepileptic agent RWJ-333369-A, but not its analog RWJ-333369, reduces regional cerebral edema without affecting neurobehavioral outcome or cell death following experimental traumatic brain injury. Restor Neurol Neurosci 25:77-90
Serbest, Gulyeter; Burkhardt, Matthew F; Siman, Robert et al. (2007) Temporal profiles of cytoskeletal protein loss following traumatic axonal injury in mice. Neurochem Res 32:2006-14

Showing the most recent 10 out of 71 publications