The Udall Center at Columbia requires a central administrative component to set policies, to establish standard operating procedures for their implementation, to oversee the day-to-day utilization of these procedures, to organize and conduct regular internal and external scientific review, and to organize and implement all the necessary forms of scientific communication to make new discoveries and achievements within the Center known to the scientific community and the public. Within the Udall Center at Columbia, all of these necessary and important functions will be performed by the Administrative Core (Core A). These functions of the Administrative Core will be performed by four components: (1) The Udall Center Executive Committee;(2) The Internal Advisory Committee;(3) The External Advisory Committee;and (4) Administrative Core Professional Staff. The composition of these components, and how they serve the functions of the Administrative Core, is herein described.

Public Health Relevance

A scientific program of the size of the Udall Center at Columbia requires a central organizational component to oversee proper financial administration;adherence to all University and Federal regulations and policies regarding animal use, occupational safety and labor relations;internal and external communications;internal and external review. The Administrative Core of The Columbia Udall Center provides all of these functions.

Agency
National Institute of Health (NIH)
Institute
National Institute of Neurological Disorders and Stroke (NINDS)
Type
Specialized Center (P50)
Project #
5P50NS038370-14
Application #
8382698
Study Section
National Institute of Neurological Disorders and Stroke Initial Review Group (NSD)
Project Start
Project End
Budget Start
2012-08-01
Budget End
2013-07-31
Support Year
14
Fiscal Year
2012
Total Cost
$221,890
Indirect Cost
$84,010
Name
Columbia University (N.Y.)
Department
Type
DUNS #
621889815
City
New York
State
NY
Country
United States
Zip Code
10032
Wu, Di; Klaw, Michelle C; Kholodilov, Nikolai et al. (2016) Expressing Constitutively Active Rheb in Adult Dorsal Root Ganglion Neurons Enhances the Integration of Sensory Axons that Regenerate Across a Chondroitinase-Treated Dorsal Root Entry Zone Following Dorsal Root Crush. Front Mol Neurosci 9:49
Louis, Elan D; Clark, Lorraine; Ottman, Ruth (2016) Familial Aggregation and Co-Aggregation of Essential Tremor and Parkinson's Disease. Neuroepidemiology 46:31-6
Guerreiro, Rita; Escott-Price, Valentina; Darwent, Lee et al. (2016) Genome-wide analysis of genetic correlation in dementia with Lewy bodies, Parkinson's and Alzheimer's diseases. Neurobiol Aging 38:214.e7-10
Pereira, Daniela B; Schmitz, Yvonne; Mészáros, József et al. (2016) Fluorescent false neurotransmitter reveals functionally silent dopamine vesicle clusters in the striatum. Nat Neurosci 19:578-86
Tambini, Marc D; Pera, Marta; Kanter, Ellen et al. (2016) ApoE4 upregulates the activity of mitochondria-associated ER membranes. EMBO Rep 17:27-36
Clark, L N; Ye, X; Liu, X et al. (2015) Genetic analysis of ten common degenerative hereditary ataxia loci in patients with essential tremor. Parkinsonism Relat Disord 21:943-7
Saunders-Pullman, Rachel; Alcalay, Roy N; Mirelman, Anat et al. (2015) REM sleep behavior disorder, as assessed by questionnaire, in G2019S LRRK2 mutation PD and carriers. Mov Disord 30:1834-9
Aimé, Pascaline; Sun, Xiaotian; Zareen, Neela et al. (2015) Trib3 Is Elevated in Parkinson's Disease and Mediates Death in Parkinson's Disease Models. J Neurosci 35:10731-49
Pasini, Silvia; Corona, Carlo; Liu, Jin et al. (2015) Specific downregulation of hippocampal ATF4 reveals a necessary role in synaptic plasticity and memory. Cell Rep 11:183-91
Cebrián, Carolina; Loike, John D; Sulzer, David (2015) Neuroinflammation in Parkinson's disease animal models: a cell stress response or a step in neurodegeneration? Curr Top Behav Neurosci 22:237-70

Showing the most recent 10 out of 223 publications