Project 1: Biology of Parkin and Its Role in Parkinson's Disease Mutations in the parkin gene play a prominent role in Parkinson's disease (PD) as mutations in parkin are the main genetic cause of autosomal recessive PD and mutations in parkin also appear to play a role in familial PD. Parkin plays a pivotal role in the ubiquitin proteasomal pathway (UPP) by functioning as an ubiquitin E3 ligase. Most disease causing mutations of parkin are thought to be loss of function mutations that ultimately lead to the absence of ubiquitination and the subsequent failure of UPP-mediated degradation of parkin substrates. Thus, the abnormal accumulation of parkin substrates could play a role in the demise of substantia nigra dopaminergic neurons in patients with parkin mutations. Moreover, inactivation of parkin through dopaminergic and oxidative and nitrosative stress may play a role in sporadic PD. The stress activated non-receptor tyrosine kinase c-Abl phosphorylates and inactivates parkin and may play a critical role in sporadic PD by inactivating parkin. We propose to characterize the role of c-Abl mediated inactivation of parkin and its relationship to oxidative and nitrosative stress in sporadic PD as well as the role of parkin substrates in the pathogenesis of PD. Understanding the function and role of c-Abl and oxidative/nitrosative stress mediated inactivation of parkin may provide novel therapeutics targets to prevent the toxic effects of parkin deficiency in the degenerative process of PD.

Public Health Relevance

Parkinson Disease (PD) is common neurodegenerative disease with no proven neuroprotective or neurorestorative therapy. Understanding the molecular mechanisms by which parkin inactivation leads to PD may provide novel therapeutic opportunities to maintain parkin in a catalytically active neuroprotective state.

Agency
National Institute of Health (NIH)
Institute
National Institute of Neurological Disorders and Stroke (NINDS)
Type
Specialized Center (P50)
Project #
5P50NS038377-15
Application #
8533012
Study Section
National Institute of Neurological Disorders and Stroke Initial Review Group (NSD)
Project Start
Project End
Budget Start
2013-08-01
Budget End
2014-07-31
Support Year
15
Fiscal Year
2013
Total Cost
$346,526
Indirect Cost
$135,230
Name
Johns Hopkins University
Department
Type
DUNS #
001910777
City
Baltimore
State
MD
Country
United States
Zip Code
21218
Hinkle, Jared Thomas; Perepezko, Kate; Bakker, Catherine C et al. (2018) Onset and Remission of Psychosis in Parkinson's Disease: Pharmacologic and Motoric Markers. Mov Disord Clin Pract 5:31-38
Kam, Tae-In; Mao, Xiaobo; Park, Hyejin et al. (2018) Poly(ADP-ribose) drives pathologic ?-synuclein neurodegeneration in Parkinson's disease. Science 362:
Sathe, Gajanan; Na, Chan Hyun; Renuse, Santosh et al. (2018) Phosphotyrosine profiling of human cerebrospinal fluid. Clin Proteomics 15:29
Guerreiro, Rita; Ross, Owen A; Kun-Rodrigues, Celia et al. (2018) Investigating the genetic architecture of dementia with Lewy bodies: a two-stage genome-wide association study. Lancet Neurol 17:64-74
Hinkle, Jared T; Perepezko, Kate; Bakker, Catherine C et al. (2018) Domain-specific cognitive impairment in non-demented Parkinson's disease psychosis. Int J Geriatr Psychiatry 33:e131-e139
Hinkle, Jared T; Perepezko, Kate; Mills, Kelly A et al. (2018) Dopamine transporter availability reflects gastrointestinal dysautonomia in early Parkinson disease. Parkinsonism Relat Disord 55:8-14
Kim, Donghoon; Hwang, Heehong; Choi, Seulah et al. (2018) D409H GBA1 mutation accelerates the progression of pathology in A53T ?-synuclein transgenic mouse model. Acta Neuropathol Commun 6:32
Kim, Sangjune; Yun, Seung Pil; Lee, Saebom et al. (2018) GBA1 deficiency negatively affects physiological ?-synuclein tetramers and related multimers. Proc Natl Acad Sci U S A 115:798-803
Kim, Donghoon; Yoo, Je Min; Hwang, Heehong et al. (2018) Graphene quantum dots prevent ?-synucleinopathy in Parkinson's disease. Nat Nanotechnol :
Hinkle, Jared T; Perepezko, Kate; Mari, Zoltan et al. (2018) Perceived Treatment Status of Fluctuations in Parkinson Disease Impacts Suicidality. Am J Geriatr Psychiatry 26:700-710

Showing the most recent 10 out of 250 publications