In the last grant period, our studies focused on intrinsic determinants of neuronal vulnerability in Parkinson's disease (PD). In the renewal application, we propose to pursue extrinsic, network-based determinants of neuronal vulnerability in PD, focusing on the innervation the innervation of the SNc by the pedunculopontine nucleus (PPN). The PPN provides the SNc with a rich glutamatergic and cholinergic innervation. Both glutamatergic and cholinergic signaling have been implicated in PD pathogenesis, but until recently, rigorous characterization of the role of these two PPN projection systems in regulating the activity and stress levels of SNc dopaminergic neurons has not been possible. This situation has now fundamentally changed with the advent of optogenetic and pharmacogenomic approaches. Using these new tools, we propose to pursue four specific aims with translational potential.
Specific Aim 1 : Determine whether PPN glutamatergic synapses on SNc dopaminergic neurons increase their oxidant stress. Our working hypothesis is that PPN terminal release of glutamate activates GluN2D-containing NMDA receptors (NMDARs) in proximal dendrites of SNc dopaminergic neurons, leading to an elevation in Ca2+ concentration and mitochondrial oxidant stress.
Specific Aim 2 : Determine whether PPN cholinergic synapses on SNc dopaminergic neurons decrease their oxidant stress. Our working hypothesis is that PPN terminal acetylcholine release activates ?4?2- and ?6?2-containing postsynaptic nicotinic receptors (nAChRs) and that repetitive activation of these terminals, leads to suppression in Cav1.3 channel currents and diminished mitochondrial oxidant stress.
Specific Aim 3 : Determine whether chronic nicotine administration decreases mitochondrial oxidant stress in SNc DA neurons. Our working hypothesis is that chronic nicotine administration suppresses intracellular Ca2+ oscillations driven by Cav1.3 channels during pacemaking and dis-facilitates glutamate release from PPN glutamatergic terminals, leading to a significant drop in mitochondrial oxidant stress and enhanced function.
Specific Aim 4 : Determine whether pharmacogenomic suppression of PPN glutamatergic neurons enhances the survival and function of SNc dopaminergic neurons in a mouse model of PD. Our working hypothesis is that dopamine depletion drives pathophysiological activity in PPN glutamatergic neurons, which increases oxidant stress levels in SNc DA neurons and accelerates their loss in PD models. The achievement of these aims could lead to the development of novel drugs targeting specific sub-classes of NMDARs and nAChRs that could be used in combination with Cav1.3 Ca2+ channel antagonists to slow or stop the progression of PD.

Public Health Relevance

The proposed studies are aimed at determining the factors responsible for the death of dopaminergic neurons in Parkinson's disease. Several hypotheses will be tested that could lead to new neuroprotective strategies, including one that is based upon the long-standing observation that smoking tobacco diminishes the risk of developing Parkinson's disease.

Agency
National Institute of Health (NIH)
Institute
National Institute of Neurological Disorders and Stroke (NINDS)
Type
Specialized Center (P50)
Project #
2P50NS047085-11
Application #
8608920
Study Section
Special Emphasis Panel (ZNS1-SRB-J (03))
Project Start
Project End
Budget Start
2013-09-30
Budget End
2014-07-31
Support Year
11
Fiscal Year
2013
Total Cost
$354,182
Indirect Cost
$118,900
Name
Northwestern University at Chicago
Department
Type
DUNS #
005436803
City
Chicago
State
IL
Country
United States
Zip Code
60611
Wilson, Charles J; Barraza, David; Troyer, Todd et al. (2014) Predicting the responses of repetitively firing neurons to current noise. PLoS Comput Biol 10:e1003612
Surmeier, D James; Graves, Steven M; Shen, Weixing (2014) Dopaminergic modulation of striatal networks in health and Parkinson's disease. Curr Opin Neurobiol 29:109-17
Sanchez-Padilla, Javier; Guzman, Jaime N; Ilijic, Ema et al. (2014) Mitochondrial oxidant stress in locus coeruleus is regulated by activity and nitric oxide synthase. Nat Neurosci 17:832-40
Gittis, Aryn H; Berke, Joshua D; Bevan, Mark D et al. (2014) New roles for the external globus pallidus in basal ganglia circuits and behavior. J Neurosci 34:15178-83
Deister, Christopher A; Dodla, Ramana; Barraza, David et al. (2013) Firing rate and pattern heterogeneity in the globus pallidus arise from a single neuronal population. J Neurophysiol 109:497-506
Atherton, Jeremy F; Menard, Ariane; Urbain, Nadia et al. (2013) Short-term depression of external globus pallidus-subthalamic nucleus synaptic transmission and implications for patterning subthalamic activity. J Neurosci 33:7130-44
Dodla, Ramana; Wilson, Charles J (2013) Effect of phase response curve skewness on synchronization of electrically coupled neuronal oscillators. Neural Comput 25:2545-610
Wilson, C J (2013) Active decorrelation in the basal ganglia. Neuroscience 250:467-82
Sulzer, David; Surmeier, D James (2013) Neuronal vulnerability, pathogenesis, and Parkinson's disease. Mov Disord 28:715-24
Dryanovski, Dilyan I; Guzman, Jaime N; Xie, Zhong et al. (2013) Calcium entry and *-synuclein inclusions elevate dendritic mitochondrial oxidant stress in dopaminergic neurons. J Neurosci 33:10154-64

Showing the most recent 10 out of 76 publications