This is a renewal application for the Northwestern University Udall Center of Excellence in Parkinson's disease Research, now in its 10th year. In the last award period, this highly productive research team made fundamental insights into the mechanisms underlying Parkinson's disease, resulting in over 50 peer-reviewed publications. Our studies also motivated a successful Phase II clinical trial with isradipine. The program continues under the direction of Dr. D. James Surmeier. There are 4 scientific projects, 1 translational project, an administrative core and a molecular biology core built around 2 central themes: 1) the determinants of selective neuronal vulnerability in Parkinson's disease and 2) the determinants of the network pathophysiology responsible for the core motor symptoms of the disease. Project 1, directed by Dr. Surmeier, builds upon ground-breaking work in the last grant period to pursue the role of the pedunculopontine nucleus and nicotine in regulating oxidant stress in substantia nigra dopaminergic neurons. Project 2, directed by Dr. Savio Chan, pursues the mechanisms governing the emergence of synchronous rhythmic bursting in globus pallidus neurons in Parkinson's disease, focusing on a novel class of these neurons that project to the striatum. Project 3, directed by Dr. Mark Bevan, explores the role of cortical and pallidal input t the subthalamic nucleus in driving oscillatory behavior in Parkinson's disease. Project 4, directed by Dr. Charles Wilson, explores the mechanisms underlying the symptomatic benefit of deep brain stimulation. Project 5, directed by Dr. Richard Miller, is a translational project;this project will test the neuroprotective potential of a novel selective antagonist of Cav1.3 L-type Ca2+ channels, as well as two anti-inflammatory agents;this project will also test the ability of novel gene therapy targeting GluN2D-containing glutamate receptors to produce symptomatic relief in a Parkinson's disease model. These projects make use of advanced molecular, optogenetic, pharmacogenomics, imaging and electrophysiological approaches to achieve their aims. The administrative core will oversee the program budget/subcontract arrangements, biannual meetings, external and internal advisory committees, archiving and distribution of program publications, compilation and submission of annual NIH program renewal applications, and maintenance of a program web page. The molecular core will provide gene expression analysis for each of the projects, provide consultation and assistance for genotyping, and provide assistance in the design and construction of viral vectors for gene knockdown and to provide assistance in the design and construction of viral vectors for gene delivery. The successful attainment of our programmatic goals should bring us closer to meeting the two grand challenges facing the Parkinson's disease research community: to develop a disease-modifying therapy and to develop better, longer lasting symptomatic therapies.

Public Health Relevance

The goal of the Northwestern University Udall Center is to meet the two grand challenges facing the Parkinson's disease community: 1) to find a means to slow or stop disease progression and 2) to find better, more lasting means of alleviating disease motor symptoms.

Agency
National Institute of Health (NIH)
Institute
National Institute of Neurological Disorders and Stroke (NINDS)
Type
Specialized Center (P50)
Project #
3P50NS047085-11S1
Application #
8739725
Study Section
Special Emphasis Panel (ZNS1-SRB-J (03))
Program Officer
Sieber, Beth-Anne
Project Start
2003-09-30
Project End
2018-07-31
Budget Start
2013-09-30
Budget End
2014-07-31
Support Year
11
Fiscal Year
2013
Total Cost
$115,875
Indirect Cost
$40,875
Name
Northwestern University at Chicago
Department
Physiology
Type
Schools of Medicine
DUNS #
005436803
City
Chicago
State
IL
Country
United States
Zip Code
60611
Wilson, Charles J; Barraza, David; Troyer, Todd et al. (2014) Predicting the responses of repetitively firing neurons to current noise. PLoS Comput Biol 10:e1003612
Surmeier, D James; Graves, Steven M; Shen, Weixing (2014) Dopaminergic modulation of striatal networks in health and Parkinson's disease. Curr Opin Neurobiol 29:109-17
Sanchez-Padilla, Javier; Guzman, Jaime N; Ilijic, Ema et al. (2014) Mitochondrial oxidant stress in locus coeruleus is regulated by activity and nitric oxide synthase. Nat Neurosci 17:832-40
Gittis, Aryn H; Berke, Joshua D; Bevan, Mark D et al. (2014) New roles for the external globus pallidus in basal ganglia circuits and behavior. J Neurosci 34:15178-83
Deister, Christopher A; Dodla, Ramana; Barraza, David et al. (2013) Firing rate and pattern heterogeneity in the globus pallidus arise from a single neuronal population. J Neurophysiol 109:497-506
Atherton, Jeremy F; Menard, Ariane; Urbain, Nadia et al. (2013) Short-term depression of external globus pallidus-subthalamic nucleus synaptic transmission and implications for patterning subthalamic activity. J Neurosci 33:7130-44
Dodla, Ramana; Wilson, Charles J (2013) Effect of phase response curve skewness on synchronization of electrically coupled neuronal oscillators. Neural Comput 25:2545-610
Wilson, C J (2013) Active decorrelation in the basal ganglia. Neuroscience 250:467-82
Sulzer, David; Surmeier, D James (2013) Neuronal vulnerability, pathogenesis, and Parkinson's disease. Mov Disord 28:715-24
Dryanovski, Dilyan I; Guzman, Jaime N; Xie, Zhong et al. (2013) Calcium entry and *-synuclein inclusions elevate dendritic mitochondrial oxidant stress in dopaminergic neurons. J Neurosci 33:10154-64

Showing the most recent 10 out of 76 publications