Persistent, synchronous, rhythmic activity throughout the cortico-basal ganglia thalamocortical loop is thought to underlie the debilitating motor symptoms of idiopathic and experimental Parkinson's disease (PD). 13-30 Hz b activity is linked to the expression of akinesia, bradykinesia and rigidity, whereas 4-7 Hz rhythmic activity is associated with resting tremor. Motor cortical inputs to the subthalamic nucleus (STN) are involved in the generation of this abnormal pattern of activity but the underlying mechanisms are poorly defined. We hypothesize that in PD loss of direct dopaminergic neuromodulation and alterations in the synaptic and intrinsic properties of neurons in the STN and reciprocally connected external globus pallidus (GPe) am- plify the response of the STN to rhythmic motor cortical inputs, leading to the emergence and propagation of abnormal activity throughout the cortico-basal ganglia thalamocortical loop. Indeed, manipulation of motor cortex-STN activity is posited to underlie the therapeutic effects of STN deep brain stimulation in PD. Thus, we propose to apply in control and chronic dopamine-depleted adult mice: 1) optogenetic and genetic approaches to manipulate motor cortex-STN and GPe-STN synaptic transmission and plasticity;2) electrophysiology and 2-photon laser scanning microscopy to study motor cortex-STN synaptic function/dysfunction and plasticity ex vivo;3) anatomical approaches at the light and electron microscopic levels and molecular profiling to determine the structural and molecular properties of motor cortex-STN synaptic transmission. We will address 4 Specific Aims: 1. Determine the synaptic and intrinsic mechanisms underlying the motor cortical patterning of STN activity and whether motor cortical inputs exhibit NMDA receptor-dependent long-term potentiation;2. Determine whether dopamine directly modulates the transmission, plasticity and in- tegration of motor cortex-STN synaptic inputs;3. Determine whether chronic dopamine depletion increases the strength of motor cortex-STN synaptic transmission through NMDA receptor-dependent plasticity;4. Deter- mine whether loss of autonomous STN activity and alterations in GPe-STN inhibition following dopamine deple- tion increase the impact of motor cortex-STN inputs. Together the data arising from this research will refine our model of basal ganglia function and dysfunc- tion and inform in Project 5 the preclinical development of gene therapies that aim, through manipulation of STN and GPe NMDA receptors, to correct the motor symptoms of PD by normalizing the pattern of cortico-basal ganglia thalamocortical activity.

Public Health Relevance

In experimental and idiopathic Parkinson's disease (PD), the cerebral cortex and subthalamic nucleus (STN) exhibit persistent, synchronous, rhythmic activity. Although correction of this abnormal activity pattern by dopamine replacement therapy or deep brain electrical stimulation of the STN profoundly improves motor func- tion, these therapies are limited in their application by associated side effects. We therefore propose to study the mechanisms underlying the emergence of abnormal activity so that better treatments can be developed to treat the motor symptoms of PD.

Agency
National Institute of Health (NIH)
Type
Specialized Center (P50)
Project #
5P50NS047085-12
Application #
8739547
Study Section
Special Emphasis Panel (ZNS1)
Project Start
Project End
Budget Start
Budget End
Support Year
12
Fiscal Year
2014
Total Cost
Indirect Cost
Name
Northwestern University at Chicago
Department
Type
DUNS #
City
Chicago
State
IL
Country
United States
Zip Code
60611
Wilson, Charles J; Barraza, David; Troyer, Todd et al. (2014) Predicting the responses of repetitively firing neurons to current noise. PLoS Comput Biol 10:e1003612
Surmeier, D James; Graves, Steven M; Shen, Weixing (2014) Dopaminergic modulation of striatal networks in health and Parkinson's disease. Curr Opin Neurobiol 29:109-17
Sanchez-Padilla, Javier; Guzman, Jaime N; Ilijic, Ema et al. (2014) Mitochondrial oxidant stress in locus coeruleus is regulated by activity and nitric oxide synthase. Nat Neurosci 17:832-40
Gittis, Aryn H; Berke, Joshua D; Bevan, Mark D et al. (2014) New roles for the external globus pallidus in basal ganglia circuits and behavior. J Neurosci 34:15178-83
Deister, Christopher A; Dodla, Ramana; Barraza, David et al. (2013) Firing rate and pattern heterogeneity in the globus pallidus arise from a single neuronal population. J Neurophysiol 109:497-506
Atherton, Jeremy F; Menard, Ariane; Urbain, Nadia et al. (2013) Short-term depression of external globus pallidus-subthalamic nucleus synaptic transmission and implications for patterning subthalamic activity. J Neurosci 33:7130-44
Dodla, Ramana; Wilson, Charles J (2013) Effect of phase response curve skewness on synchronization of electrically coupled neuronal oscillators. Neural Comput 25:2545-610
Wilson, C J (2013) Active decorrelation in the basal ganglia. Neuroscience 250:467-82
Sulzer, David; Surmeier, D James (2013) Neuronal vulnerability, pathogenesis, and Parkinson's disease. Mov Disord 28:715-24
Dryanovski, Dilyan I; Guzman, Jaime N; Xie, Zhong et al. (2013) Calcium entry and *-synuclein inclusions elevate dendritic mitochondrial oxidant stress in dopaminergic neurons. J Neurosci 33:10154-64

Showing the most recent 10 out of 76 publications