The goal of this project is to use a combination of genetically engineered mice and virus-mediated gene transfer in conjunction with mouse behavioral tests of learning and memory to identify the neural circuits that may underlie the cognitive decline in PD patients. We will develop two novel transgenic mouse lines that will allow us either to block genetically the production of dopamine in discrete dopaminergic projection regions by viral-mediated recombination of the tyrosine hydroxylase gene or to ablate completely dopamine neurons. We will determine whether the loss of dopamine signaling (by inactivation of tyrosine hydroxylase) or dopamine neuron death (by action of diphtheria toxin) leads to cognitive impairment and morphological changes within the striatum and/or prefrontal cortex (in conjunction with project 2).

Public Health Relevance

Parkinson's disease (PD) is caused by dopamine neuron cell death, but it is unclear if PD-related cognitive impairment is due to the loss of dopamine signaling, or to the secondary effects of dopamine neuron degeneration. We will develop 2 novel mouse models of PD to distinguish between the effects of loss of dopamine signaling and dopamine neuron degeneration on cognitive abilities.

Agency
National Institute of Health (NIH)
Institute
National Institute of Neurological Disorders and Stroke (NINDS)
Type
Specialized Center (P50)
Project #
5P50NS062684-05
Application #
8535834
Study Section
National Institute of Neurological Disorders and Stroke Initial Review Group (NSD)
Project Start
Project End
Budget Start
2013-08-01
Budget End
2014-07-31
Support Year
5
Fiscal Year
2013
Total Cost
$188,627
Indirect Cost
$57,181
Name
University of Washington
Department
Type
DUNS #
605799469
City
Seattle
State
WA
Country
United States
Zip Code
98195
Smulders, Katrijn; Dale, Marian L; Carlson-Kuhta, Patricia et al. (2016) Pharmacological treatment in Parkinson's disease: Effects on gait. Parkinsonism Relat Disord 31:3-13
Wang, Liyong; Maldonado, Lizmarie; Beecham, Gary W et al. (2016) DNA variants in CACNA1C modify Parkinson disease risk only when vitamin D level is deficient. Neurol Genet 2:e72
Mata, Ignacio F; Leverenz, James B; Weintraub, Daniel et al. (2016) GBA Variants are associated with a distinct pattern of cognitive deficits in Parkinson's disease. Mov Disord 31:95-102
Mata, Ignacio F; Davis, Marie Y; Lopez, Alexis N et al. (2016) The discovery of LRRK2 p.R1441S, a novel mutation for Parkinson's disease, adds to the complexity of a mutational hotspot. Am J Med Genet B Neuropsychiatr Genet 171:925-30
Costa-Mallen, Paola; Zabetian, Cyrus P; Hu, Shu-Ching et al. (2016) Smoking and haptoglobin phenotype modulate serum ferritin and haptoglobin levels in Parkinson disease. J Neural Transm (Vienna) 123:1319-1330
Moelter, Stephen T; Weintraub, Daniel; Mace, Lauren et al. (2016) Research consent capacity varies with executive function and memory in Parkinson's disease. Mov Disord 31:414-7
Cholerton, Brenna; Larson, Eric B; Quinn, Joseph F et al. (2016) Precision Medicine: Clarity for the Complexity of Dementia. Am J Pathol 186:500-6
Davis, Marie Y; Johnson, Catherine O; Leverenz, James B et al. (2016) Association of GBA Mutations and the E326K Polymorphism With Motor and Cognitive Progression in Parkinson Disease. JAMA Neurol 73:1217-1224
Costa-Mallen, Paola; Zabetian, Cyrus P; Agarwal, Pinky et al. (2016) Response to the letter "Haptoglobin phenotype and Parkinson disease risk" by Delanghe et al. Parkinsonism Relat Disord 22:110-1
Crane, Paul K; Gibbons, Laura E; Dams-O'Connor, Kristen et al. (2016) Association of Traumatic Brain Injury With Late-Life Neurodegenerative Conditions and Neuropathologic Findings. JAMA Neurol 73:1062-9

Showing the most recent 10 out of 151 publications