Because there is no widely available test to confirm the clinical diagnosis of Parkinson's disease (PD), other parkinsonian condifions are frequently misdiagnosed as PD. This poses problems for clinical trials and pafient care. Using FDG PET and spatial covariance mapping, we have idenfified patterns of brain metabolism that disfinguish PD, mulfiple system atrophy (MSA) and progressive supranuclear palsy (PSP), the two most common atypical parkinsonian syndromes. Ufilizing a novel automated differenfial diagnosis algorithm, image-based classificafions can provide excellent diagnostic accuracy for idiopathic PD, even eariy in the disease course. Metabolic imaging with automated pattern analysis is thus a promising approach for accurate early diagnosis of PD vs. MSA or PSP. In this project, we will validate this approach in stricfiy defined patient populations, establish its false positive and false negative rates, and determine how early the metabolic abnormalifies are detectable by studying a populafion at risk for PD (individuals with REM behavior disorder, or RBD). Collaborations with Stanford University and the Udall Center at the University of Pennsylvania will broaden our patient base and enable us to test the feasibility of our approach across different movement disorder clinics and imaging centers.
In Specific Aim 1 we will test the sensitivity and specificity of our image-based automated classification in patients with unequivocal clinical diagnoses of PD, MSA, or PSP.
Specific Aim 2 will assess the diagnosfic accuracy of FDG PET in a real world context by testing our method in early parkinsonian subjects with an uncertain diagnosis.
Specific Aim 3 moves toward determining whether we can develop a biomarker to detect prodromal PD: we will determine whether there are presymptomatic changes in brain metabolism and dopaminergic funcfion in subjects with REM behavior disorder (RBD), a significant percentage of whom go on to develop PD. The development of a reliable technique for the early, objective, and accurate diagnosis of PD will improve clinical management, and will help to optimize the conduct of PD clinical research.

Public Health Relevance

This project will validate a widely available method (FDG PET) for use in the differential diagnosis of parkinsonism, and will assess this method's usefulness in a real world populafion of patients with early parkinsonism. In addifion, the study will ufilize PET imaging to examine abnormalities in brain funcfion in pafients at risk for developing Parkinson's disease (PD) who do not yet show signs of the disease (i.e. patients with REM Behavior Disorder). The development of a technology for the early, objective, and accurate diagnosis of PD will improve clinical management, and will help to opfimize the conduct of PD clinical research.

National Institute of Health (NIH)
National Institute of Neurological Disorders and Stroke (NINDS)
Specialized Center (P50)
Project #
Application #
Study Section
Special Emphasis Panel (ZNS1-SRB-E)
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
Feinstein Institute for Medical Research
United States
Zip Code
Ko, Ji Hyun; Lerner, Renata P; Eidelberg, David (2015) Effects of levodopa on regional cerebral metabolism and blood flow. Mov Disord 30:54-63
Peng, Shichun; Ma, Yilong; Spetsieris, Phoebe G et al. (2014) Characterization of disease-related covariance topographies with SSMPCA toolbox: effects of spatial normalization and PET scanners. Hum Brain Mapp 35:1801-14
Peng, Shichun; Eidelberg, David; Ma, Yilong (2014) Brain network markers of abnormal cerebral glucose metabolism and blood flow in Parkinson's disease. Neurosci Bull 30:823-37
Ko, Ji Hyun; Feigin, Andrew; Mattis, Paul J et al. (2014) Network modulation following sham surgery in Parkinson's disease. J Clin Invest 124:3656-66
Holtbernd, Florian; Gagnon, Jean-Fran├žois; Postuma, Ron B et al. (2014) Abnormal metabolic network activity in REM sleep behavior disorder. Neurology 82:620-7
Tomer, Rachel; Slagter, Heleen A; Christian, Bradley T et al. (2014) Love to win or hate to Lose? Asymmetry of dopamine D2 receptor binding predicts sensitivity to reward versus punishment. J Cogn Neurosci 26:1039-48
Ko, Ji Hyun; Spetsieris, Phoebe; Ma, Yilong et al. (2014) Quantifying significance of topographical similarities of disease-related brain metabolic patterns. PLoS One 9:e88119
Holtbernd, Florian; Eidelberg, David (2014) The utility of neuroimaging in the differential diagnosis of parkinsonian syndromes. Semin Neurol 34:202-9
Papay, Kimberly; Xie, Sharon X; Stern, Matthew et al. (2014) Naltrexone for impulse control disorders in Parkinson disease: a placebo-controlled study. Neurology 83:826-33
Spetsieris, Phoebe; Ma, Yilong; Peng, Shichun et al. (2013) Identification of disease-related spatial covariance patterns using neuroimaging data. J Vis Exp :

Showing the most recent 10 out of 18 publications