The Administrative Core will oversee the daily operations of the Udall Center at the Feinstein Institute in the areas of scientific and financial management, procurement, property and personnel management, and website management, in addition, administrative core personnel will assist other specialized cores with data management and sharing, outreach activities, and training and education activities, as well as coordinate meetings ofthe Executive Committee and External Advisory Panel and participate in the Annual Udall Center Directors meeting. Although some of these functions (convening an External Advisory Panel specifically for the Udall Center and creating a Udall-specific web site) will be additions to the usual operations of the office of the director of the Feinstein Institute Center for Neurosciences (PI: Dr. David Eidelberg), most of these functions are already being performed by Dr. Eidelberg and his administrative staff (e.g., overseeing education and training programs).

Agency
National Institute of Health (NIH)
Institute
National Institute of Neurological Disorders and Stroke (NINDS)
Type
Specialized Center (P50)
Project #
5P50NS071675-05
Application #
8742001
Study Section
Special Emphasis Panel (ZNS1-SRB-E)
Project Start
Project End
Budget Start
2014-09-01
Budget End
2015-08-31
Support Year
5
Fiscal Year
2014
Total Cost
$118,041
Indirect Cost
$46,932
Name
Feinstein Institute for Medical Research
Department
Type
DUNS #
110565913
City
Manhasset
State
NY
Country
United States
Zip Code
11030
Lerner, Renata P; Francardo, Veronica; Fujita, Koji et al. (2017) Levodopa-induced abnormal involuntary movements correlate with altered permeability of the blood-brain-barrier in the basal ganglia. Sci Rep 7:16005
Vo, An; Sako, Wataru; Fujita, Koji et al. (2017) Parkinson's disease-related network topographies characterized with resting state functional MRI. Hum Brain Mapp 38:617-630
Hendershott, Taylor R; Zhu, Delphine; Llanes, Seoni et al. (2017) Domain-specific accuracy of the Montreal Cognitive Assessment subsections in Parkinson's disease. Parkinsonism Relat Disord 38:31-34
Tomše, Petra; Jensterle, Luka; Rep, Sebastijan et al. (2017) The effect of 18F-FDG-PET image reconstruction algorithms on the expression of characteristic metabolic brain network in Parkinson's disease. Phys Med 41:129-135
Ng, Bernard; Varoquaux, Gael; Poline, Jean Baptiste et al. (2017) Distinct alterations in Parkinson's medication-state and disease-state connectivity. Neuroimage Clin 16:575-585
Davis, Marie Y; Johnson, Catherine O; Leverenz, James B et al. (2016) Association of GBA Mutations and the E326K Polymorphism With Motor and Cognitive Progression in Parkinson Disease. JAMA Neurol 73:1217-1224
Lerner, Renata P; Bimpisidis, Zisis; Agorastos, Stergiani et al. (2016) Dissociation of metabolic and hemodynamic levodopa responses in the 6-hydroxydopamine rat model. Neurobiol Dis 96:31-37
Tripathi, Madhavi; Tang, Chris C; Feigin, Andrew et al. (2016) Automated Differential Diagnosis of Early Parkinsonism Using Metabolic Brain Networks: A Validation Study. J Nucl Med 57:60-6
Jourdain, Vincent A; Tang, Chris C; Holtbernd, Florian et al. (2016) Flow-metabolism dissociation in the pathogenesis of levodopa-induced dyskinesia. JCI Insight 1:e86615
Spetsieris, Phoebe G; Ko, Ji Hyun; Tang, Chris C et al. (2015) Metabolic resting-state brain networks in health and disease. Proc Natl Acad Sci U S A 112:2563-8

Showing the most recent 10 out of 42 publications