This subproject is one of many research subprojects utilizing the resources provided by a Center grant funded by NIH/NCRR. Primary support for the subproject and the subproject's principal investigator may have been provided by other sources, including other NIH sources. The Total Cost listed for the subproject likely represents the estimated amount of Center infrastructure utilized by the subproject, not direct funding provided by the NCRR grant to the subproject or subproject staff. A major challenge in vaccinology is that the efficacy of a vaccine can only be ascertained retrospectively, upon infection. The identification of molecular signatures, induced rapidly after vaccination, which correlate with and predict the later development of protective immunity, represent a strategy to prospectively determine vaccine efficacy. This strategy is useful when evaluating the efficacy or immunogenicity of untested vaccines, or in identifying individuals with sub-optimal responses amongst high risk populations, such as the elderly. We have recently used a systems biology approach to identify early gene signatures that predict later immune responses in humans vaccinated with the yellow fever vaccine YF-17D. This project seeks to determine the extent to which this approach will have broad utility in predicting the immunogenicity of other vaccines, and in identifying new correlates of protective immunity. We have initiated a highly collaborative effort to perform a comprehensive analysis of immune responses induced by three distinct vaccines: (i) inactivated trivalent influenza vaccine, (ii) pneumococcal polysaccharide vaccine and (iii) live attenuated varicella-zoster vaccine. These vaccines were selected for this study because influenza virus, pneumococcus, and zoster are of global public health importance and the cause of severe morbidity and mortality, especially in the elderly and other high-risk groups;all three are known to generate sub-optimal immunity in a substantial proportion of elderly vaccinees. Successful completion of this program may provide insights into defects that underlie poor vaccine efficacy in the elderly, and establish the broad utility of systems biology in predicting vaccine immunogenicity.

Agency
National Institute of Health (NIH)
Institute
National Center for Research Resources (NCRR)
Type
Primate Research Center Grants (P51)
Project #
2P51RR000165-51
Application #
8357546
Study Section
Special Emphasis Panel (ZRR1-CM-5 (01))
Project Start
2011-08-01
Project End
2012-04-30
Budget Start
2011-08-01
Budget End
2012-04-30
Support Year
51
Fiscal Year
2011
Total Cost
$32,906
Indirect Cost
Name
Emory University
Department
Otolaryngology
Type
Schools of Medicine
DUNS #
066469933
City
Atlanta
State
GA
Country
United States
Zip Code
30322
Maddox, S A; Kilaru, V; Shin, J et al. (2017) Estrogen-dependent association of HDAC4 with fear in female mice and women with PTSD. Mol Psychiatry :
Banerjee, Sunayana B; Gutzeit, Vanessa A; Baman, Justin et al. (2017) Perineuronal Nets in the Adult Sensory Cortex Are Necessary for Fear Learning. Neuron 95:169-179.e3
Bruner, Emiliano; Preuss, Todd M; Chen, Xu et al. (2017) Evidence for expansion of the precuneus in human evolution. Brain Struct Funct 222:1053-1060
Chen, Guiqin; Nie, Shuke; Han, Chao et al. (2017) Antidyskinetic Effects of MEK Inhibitor Are Associated with Multiple Neurochemical Alterations in the Striatum of Hemiparkinsonian Rats. Front Neurosci 11:112
Dehkharghani, S; Fleischer, C C; Qiu, D et al. (2017) Cerebral Temperature Dysregulation: MR Thermographic Monitoring in a Nonhuman Primate Study of Acute Ischemic Stroke. AJNR Am J Neuroradiol 38:712-720
Walker, Lary C; Jucker, Mathias (2017) The Exceptional Vulnerability of Humans to Alzheimer's Disease. Trends Mol Med 23:534-545
Payne, Christa; Cirilli, Laetitia; Bachevalier, Jocelyne (2017) An MRI study of the corpus callosum in monkeys: Developmental trajectories and effects of neonatal hippocampal and amygdala lesions. Dev Psychobiol 59:495-506
Tedesco, Dana; Thapa, Manoj; Gumber, Sanjeev et al. (2017) CD4(+) Foxp3(+) T cells promote aberrant immunoglobulin G production and maintain CD8(+) T-cell suppression during chronic liver disease. Hepatology 65:661-677
Hecht, E E; Mahovetz, L M; Preuss, T M et al. (2017) A neuroanatomical predictor of mirror self-recognition in chimpanzees. Soc Cogn Affect Neurosci 12:37-48
Fonseca, Jairo A; McCaffery, Jessica N; Kashentseva, Elena et al. (2017) A prime-boost immunization regimen based on a simian adenovirus 36 vectored multi-stage malaria vaccine induces protective immunity in mice. Vaccine 35:3239-3248

Showing the most recent 10 out of 880 publications