To determine the peptide binding motif of a rhesus macaque MHC class I molecule. RESULTS We have now defined the optimal SIV gag CTL epitope restricted by the rhesus MHC class I molecule Mamu-A*01 and defined a general peptide binding motif for this molecule that is characterized by a dominant position 3 anchor (proline). We used peptide elution and sequencing, peptide binding assays, and bulk and clonal CTL assays to demonstrate that the optimal Mamu-A*01-restricted SIV gag CTL epitope was CTPYDINQM181P189. Mamu-A*01 is unique in that it is found at a high frequency in rhesus macaques, and all SIV-infected Mamu-A*01-positive rhesus macaques studied to date develop an immunodominant gag-specific CTL response restricted by this molecule. DISCUSSION The majority of immunogenic CTL epitopes bind to MHC class I molecules with high affinity. However, peptides longer or shorter than the optimal epitope rarely bind with high affinity. Therefore, identification of optimal CTL epitopes from pathogens may ultimately be critical for inducing strong CTL responses and developing epitope-based vaccines. The SIV-infected rhesus macaque is an excellent animal model for HIV infection of humans. Although a number of CTL epitopes have been mapped in SIV-infected rhesus macaques, the optimal epitopes have not been well defined, and their anchor residues are unknown. FUTURE DIRECTIONS Identification of the optimal SIV gag CTL epitope will be critical for a variety of studies designed to induce CD8+ CTL responses specific for SIV in the rhesus macaque. KEY WORDS MHC, SIV, CTL, motif, vaccine FUNDING NIH RR00167, AI32426, AI41913 PUBLICATIONS Allen, TM, Sidney, J, del Guercio, M-F, Lehman, E, Glickman, RL, Lensmeyer, GL, Wiebe, DA, Pauza, CD, Johnson, RP, Sette, A, and D.I. Watkins. 1998. Characterization of the Peptide Binding Motif of a Rhesus MHC class I molecule (Mamu-A*01) that Binds an Immunodominant CTL Epitope from SIV. J Immunol. 160:6062-6071.

Agency
National Institute of Health (NIH)
Institute
National Center for Research Resources (NCRR)
Type
Primate Research Center Grants (P51)
Project #
5P51RR000167-41
Application #
6454302
Study Section
Project Start
2001-05-01
Project End
2002-04-30
Budget Start
Budget End
Support Year
41
Fiscal Year
2001
Total Cost
Indirect Cost
Name
University of Wisconsin Madison
Department
Type
DUNS #
161202122
City
Madison
State
WI
Country
United States
Zip Code
53715
Kang, HyunJun; Mesquitta, Walatta-Tseyon; Jung, Ho Sun et al. (2018) GATA2 Is Dispensable for Specification of Hemogenic Endothelium but Promotes Endothelial-to-Hematopoietic Transition. Stem Cell Reports 11:197-211
Rhoads, Timothy W; Burhans, Maggie S; Chen, Vincent B et al. (2018) Caloric Restriction Engages Hepatic RNA Processing Mechanisms in Rhesus Monkeys. Cell Metab 27:677-688.e5
Ellis-Connell, Amy L; Balgeman, Alexis J; Zarbock, Katie R et al. (2018) ALT-803 Transiently Reduces Simian Immunodeficiency Virus Replication in the Absence of Antiretroviral Treatment. J Virol 92:
Park, Mi Ae; Jung, Ho Sun; Slukvin, Igor (2018) Genetic Engineering of Human Pluripotent Stem Cells Using PiggyBac Transposon System. Curr Protoc Stem Cell Biol 47:e63
Ellis, Amy; Balgeman, Alexis; Rodgers, Mark et al. (2017) Characterization of T Cells Specific for CFP-10 and ESAT-6 in Mycobacterium tuberculosis-Infected Mauritian Cynomolgus Macaques. Infect Immun 85:
Rodrigues, Michelle A (2017) Female Spider Monkeys (Ateles geoffroyi) Cope with Anthropogenic Disturbance Through Fission-Fusion Dynamics. Int J Primatol 38:838-855
Buechler, Connor R; Bailey, Adam L; Lauck, Michael et al. (2017) Genome Sequence of a Novel Kunsagivirus (Picornaviridae: Kunsagivirus) from a Wild Baboon (Papio cynocephalus). Genome Announc 5:
Wu, Hong; Whritenour, Jessica; Sanford, Jonathan C et al. (2017) Identification of MHC Haplotypes Associated with Drug-induced Hypersensitivity Reactions in Cynomolgus Monkeys. Toxicol Pathol 45:127-133
Shackman, A J; Fox, A S; Oler, J A et al. (2017) Heightened extended amygdala metabolism following threat characterizes the early phenotypic risk to develop anxiety-related psychopathology. Mol Psychiatry 22:724-732
Kalin, Ned H (2017) Mechanisms underlying the early risk to develop anxiety and depression: A translational approach. Eur Neuropsychopharmacol 27:543-553

Showing the most recent 10 out of 528 publications