This subproject is one of many research subprojects utilizing the resources provided by a Center grant funded by NIH/NCRR. Primary support for the subproject and the subproject's principal investigator may have been provided by other sources, including other NIH sources. The Total Cost listed for the subproject likely represents the estimated amount of Center infrastructure utilized by the subproject, not direct funding provided by the NCRR grant to the subproject or subproject staff. At least five arenaviruses cause viral hemorrhagic fevers in humans. Lassa virus, an Old World arenavirus, utilizes the cellular receptor a-dystroglycan to infect cells1. Machupo, Guanarito, Junin, and Sabia viruses are New World hemorrhagic fever viruses that do not use a-dystroglycan2. Here we demonstrate a specific, high-affinity association between transferrin receptor 1 (TfR1) and the entry glycoprotein (GP) of Machupo virus. Expression of human TfR1, but not human transferrin receptor 2, in hamster cell lines markedly enhanced infection of viruses pseudotyped with the GP of Machupo and Junin viruses, but not Lassa or lymphocytic choriomeningitis viruses. An anti-TfR1 antibody efficiently inhibited replication of Machupo, Guanarito, Junin, and Sabia viruses, but not that of Lassa virus. Iron depletion of culture media enhanced, and iron supplementation reduced, the efficiency of infection by Junin and Machupo but not Lassa pseudoviruses. These data indicate that TfR1 is a cellular receptor for New World hemorrhagic fever arenaviruses.

Agency
National Institute of Health (NIH)
Institute
National Center for Research Resources (NCRR)
Type
Primate Research Center Grants (P51)
Project #
5P51RR000168-50
Application #
8357941
Study Section
Special Emphasis Panel (ZRR1-CM-8 (01))
Project Start
2011-05-01
Project End
2012-04-30
Budget Start
2011-05-01
Budget End
2012-04-30
Support Year
50
Fiscal Year
2011
Total Cost
$166,443
Indirect Cost
Name
Harvard University
Department
Veterinary Sciences
Type
Schools of Medicine
DUNS #
047006379
City
Boston
State
MA
Country
United States
Zip Code
02115
Shang, L; Smith, A J; Reilly, C S et al. (2018) Vaccine-modified NF-kB and GR signaling in cervicovaginal epithelium correlates with protection. Mucosal Immunol 11:512-522
Sonntag, Kai-Christian; Woo, Tsung-Ung W (2018) Laser microdissection and gene expression profiling in the human postmortem brain. Handb Clin Neurol 150:263-272
Almodovar, Sharilyn; Swanson, Jessica; Giavedoni, Luis D et al. (2018) Lung Vascular Remodeling, Cardiac Hypertrophy, and Inflammatory Cytokines in SHIVnef-Infected Macaques. Viral Immunol 31:206-222
Duke, Angela N; Meng, Zhiqiang; Platt, Donna M et al. (2018) Evidence That Sedative Effects of Benzodiazepines Involve Unexpected GABAA Receptor Subtypes: Quantitative Observation Studies in Rhesus Monkeys. J Pharmacol Exp Ther 366:145-157
Kamberov, Yana G; Guhan, Samantha M; DeMarchis, Alessandra et al. (2018) Comparative evidence for the independent evolution of hair and sweat gland traits in primates. J Hum Evol 125:99-105
Seth, Nitin; Simmons, Heather A; Masood, Farah et al. (2018) Model of Traumatic Spinal Cord Injury for Evaluating Pharmacologic Treatments in Cynomolgus Macaques (Macaca fasicularis). Comp Med 68:63-73
Mauney, Sarah A; Woo, Tsung-Ung W; Sonntag, Kai C (2018) Cell Type-Specific Laser Capture Microdissection for Gene Expression Profiling in the Human Brain. Methods Mol Biol 1723:203-221
Termini, James M; Church, Elizabeth S; Silver, Zachary A et al. (2017) Human Immunodeficiency Virus and Simian Immunodeficiency Virus Maintain High Levels of Infectivity in the Complete Absence of Mucin-Type O-Glycosylation. J Virol 91:
Ma, Qi; Ruan, Hongyu; Peng, Lisheng et al. (2017) Proteasome-independent polyubiquitin linkage regulates synapse scaffolding, efficacy, and plasticity. Proc Natl Acad Sci U S A 114:E8760-E8769
Shang, L; Duan, L; Perkey, K E et al. (2017) Epithelium-innate immune cell axis in mucosal responses to SIV. Mucosal Immunol 10:508-519

Showing the most recent 10 out of 365 publications