The Portland Alcohol Research Center (PARC) focuses on the etiology and prediction of risk of alcohol abuse, alcoholism, and specific alcohol-related health problems (e.g., withdrawal seizures, excessive drinking). The genetic risk and protective markers and gene networks that we are studying will help us to develop strategies for the prevention of alcoholism. The first overarching theme of the PARC is to use behavioral genomics strategies, through studies of gene mapping and expression, and development of new genetic animal models, to identify genes underlying ethanol neuroadaptation. The other main PARC theme is exploring mechanisms underlying and traits related to ethanol neuroadaptation. Two specific hypotheses have emerged from the synthesis of PARC and related projects'findings. The first hypothesis is the intriguing idea that withdrawal and drinking are influenced by some of the same genes and gene networks. Many different studies and genotypes have found that high-withdrawal genotypes are genetically predisposed to drink less than low-withdrawal genotypes. We now also consider the effect of chronic ethanol exposure on alcohol consumption. The second hypothesis is that high trait impulsivity is a significant genetic risk factor for high alcohol drinking. Genetic dissociation of different aspects of impulsivity is supported by PARC findings, with high impulsivity on """"""""delay discounting"""""""" tasks predicting greater and high impulsivity on """"""""go/no-go"""""""" tasks predicting less non-dependent drinking. The latter also predicts greaten withdrawal severity following dependence. Five research components, three core components, and a pilot project component address these themes and hypotheses using mouse models and non-human primates. To the extent possible across species, we are making a concerted effort to integrate the components with a """"""""core circuit"""""""" of brain structures that relate to drinking, withdrawal, and impulsivity. Our expanded bioinformatics effort has enabled expansion of a key strength of our group from the analysis of the contributions of individual genes on behavioral functions of the whole organism to include gene network identification. The PARC Is recognized as a leader in quantitative trait gene (QTG) Identification, successfully pursuing a genetic locus Influencing withdrawal to discover the first alcohol-related behavioral response QTG, Mpdz, and recent studies identifying high-quality QTG candidates including Kcnj9. An Education and Outreach component trains pre- and post-doctoral students in alcohol research, disseminates research findings to the public, and engages in a range of activities with elementary-to-high school students.

Public Health Relevance

Overall Center Project Narrative. The Portland Alcohol Research Center seeks to identify specific genes that place Individuals at risk of, or protect them from, alcoholism. Knowledge of such genes will facilitate the discovery of new drugs to treat alcohol dependence disorders.

National Institute of Health (NIH)
National Institute on Alcohol Abuse and Alcoholism (NIAAA)
Comprehensive Center (P60)
Project #
Application #
Study Section
Special Emphasis Panel (ZAA1-GG (99))
Program Officer
Parsian, Abbas
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
Oregon Health and Science University
Other Basic Sciences
Schools of Medicine
United States
Zip Code
Greenberg, Gian D; Phillips, Tamara J; Crabbe, John C (2016) Effects of acute alcohol withdrawal on nest building in mice selectively bred for alcohol withdrawal severity. Physiol Behav 165:257-66
Shi, Xiao; Walter, Nicole A R; Harkness, John H et al. (2016) Genetic Polymorphisms Affect Mouse and Human Trace Amine-Associated Receptor 1 Function. PLoS One 11:e0152581
Smith, Monique L; Hostetler, Caroline M; Heinricher, Mary M et al. (2016) Social transfer of pain in mice. Sci Adv 2:e1600855
Siciliano, Cody A; Calipari, Erin S; Yorgason, Jordan T et al. (2016) Chronic ethanol self-administration in macaques shifts dopamine feedback inhibition to predominantly D2 receptors in nucleus accumbens core. Drug Alcohol Depend 158:159-63
Barkley-Levenson, Amanda M; Ryabinin, Andrey E; Crabbe, John C (2016) Neuropeptide Y response to alcohol is altered in nucleus accumbens of mice selectively bred for drinking to intoxication. Behav Brain Res 302:160-70
Shabani, Shkelzen; Houlton, Sydney K; Hellmuth, Laura et al. (2016) A Mouse Model for Binge-Level Methamphetamine Use. Front Neurosci 10:493
Chesler, Elissa J; Gatti, Daniel M; Morgan, Andrew P et al. (2016) Diversity Outbred Mice at 21: Maintaining Allelic Variation in the Face of Selection. G3 (Bethesda) 6:3893-3902
Siciliano, Cody A; Calipari, Erin S; Yorgason, Jordan T et al. (2016) Increased presynaptic regulation of dopamine neurotransmission in the nucleus accumbens core following chronic ethanol self-administration in female macaques. Psychopharmacology (Berl) 233:1435-43
Crabbe, John C; Schlumbohm, Jason P; Hack, Wyatt et al. (2016) Fear conditioning in mouse lines genetically selected for binge-like ethanol drinking. Alcohol 52:25-32
Smith, M L; Li, J; Cote, D M et al. (2016) Effects of isoflurane and ethanol administration on c-Fos immunoreactivity in mice. Neuroscience 316:337-43

Showing the most recent 10 out of 237 publications