This is the ROO activation of the funded K99 proposal """"""""Statistical Methods for Analysis of High-Dimensional Gene and Environment Data"""""""" (K99ES017744) by Dr. Arnab Maity, a statistically trained Assistant Professor in the Department of Statistics at North Carolina State University (NCSU). Dr. Maity is committed to a research career in the development of statistical methodology for the analysis of high-dimensional gene and environment data. This application includes updated specific aims and research plans for the ROO phase, a description of progress during the K99 phase, evaluation reports from the K99 phase mentors, and a letter from Dr. Peter Bloomfield, Interim Head of Department of Statistics, NCSU, detailing the institutional commitment and details for Dr. Maity's career development plan. The proposed research concerns two major aims: (1) analyzing DNA methylation in the human genome and developing statistical methodology to investigate its association to environmental exposure to heavy metals and air particles, and various markers of cardiovascular disease, and (2) developing robust and efficient statistical testing procedures for genetic and environmental effects in high-dimensional genome-wide association studies (GWAS) in the presence of gene-gene and gene-environment interactions and incorporating longitudinal measures of phenotypes. The applicant has readily available data sets on genome-wide DNA methylation study in the Normative Aging Study and the genome-wide association studies of Framingham Heart Study. The proposed methods will be applied to these data sets to draw valuable conclusions regarding the interplay of DNA methylation and other genetic variants, and environmental exposures in relation to susceptibility to cardiovascular disease. Career development for Dr. Maity and accomplishment of the research aims will be facilitated by excellent research and career supporting resources available within the Statistics department at NCSU and the University, participation in various gene and environment research projects with other researchers within NCSU and outside such as UNC School of Public Health, NIEHS and SAMSI, various scientific meetings and seminars, and the rich research community in NCSU and Research Triangle Area.

Public Health Relevance

We will develop statistical methodology and software to analyze high-dimensional gene and environmental data and their interplay in relation to human health. We will identify genetic and environmental exposure factors that are associated with chronic diseases, such as heart disease, stroke, diabetes, and hypertension.

National Institute of Health (NIH)
National Institute of Environmental Health Sciences (NIEHS)
Research Transition Award (R00)
Project #
Application #
Study Section
Special Emphasis Panel (NSS)
Program Officer
Mcallister, Kimberly A
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
North Carolina State University Raleigh
Biostatistics & Other Math Sci
Schools of Earth Sciences/Natur
United States
Zip Code
Maity, Arnab; Zhao, Jing; Sullivan, Patrick F et al. (2018) Inference on phenotype-specific effects of genes using multivariate kernel machine regression. Genet Epidemiol 42:64-79
Kong, Dehan; Maity, Arnab; Hsu, Fang-Chi et al. (2018) Rejoinder to ""A note on testing and estimation in marker-set association study using semiparametric quantile regression kernel machine"". Biometrics 74:767-768
Kim, Janet S; Maity, Arnab; Staicu, Ana-Maria (2018) Additive Nonlinear Functional Concurrent Model. Stat Interface 11:669-685
Davenport, Clemontina A; Maity, Arnab; Baladandayuthapani, Veerabhadran (2018) Functional interaction-based nonlinear models with application to multiplatform genomics data. Stat Med 37:2715-2733
Davenport, Clemontina A; Maity, Arnab; Sullivan, Patrick F et al. (2018) A Powerful Test for SNP Effects on Multivariate Binary Outcomes using Kernel Machine Regression. Stat Biosci 10:117-138
Kim, Janet S; Staicu, Ana-Maria; Maity, Arnab et al. (2018) Additive Function-on-Function Regression. J Comput Graph Stat 27:234-244
Terry, William; Zhang, Hongmei; Maity, Arnab et al. (2017) Unified variable selection in semi-parametric models. Stat Methods Med Res 26:2821-2831
Usset, Joseph; Staicu, Ana-Maria; Maity, Arnab (2016) Interaction Models for Functional Regression. Comput Stat Data Anal 94:317-329
Kong, Dehan; Staicu, Ana-Maria; Maity, Arnab (2016) Classical Testing in Functional Linear Models. J Nonparametr Stat 28:813-838
Kong, Dehan; Maity, Arnab; Hsu, Fang-Chi et al. (2016) Testing and estimation in marker-set association study using semiparametric quantile regression kernel machine. Biometrics 72:364-71

Showing the most recent 10 out of 33 publications