The Ubiquitin Proteasome Pathway (UPP) controls the activities of signaling systems through reversible conjugation of ubiquitin and ubiquitin like proteins (Ubls). The UPP system contains more than 900 genes and functions in virtually all aspects of biology, including aging, neurodegeneration and cancer, yet the functions of only a subset of these genes are known. This proposal seeks to continue our development a systems-based approach for identifying functions and targets of UPP components in the cell division cycle and checkpoint pathways in mammalian cells. The platform we are developing employs global analysis of the UPP in these processes using loss of function genetics, proteomics, and newly established genetic approaches for the identification of substrates for E3 ubiquitin ligases. The integration of these systems with a focus on cell cycle and checkpoint controls provides a powerful approach to gene and pathway discovery. Using these systems, we have identified several new genes that control the spindle checkpoint controlling chromosome segregation. One of these, the deubiquitinating enzyme Usp44, controls the ubiquitination status of the APC regulatory protein Cdc20, a recently identified step in APC activation that promotes dissociation of Mad2. Usp44 therefore functions to maintain Cdc20 in its Mad2-inhibited state. Usp44 itself is also regulated during the cell cycle and in response to checkpoint activation.
In Aim 1, we will continue to elucidate how Usp44 is regulated and how its activity controls the checkpoint. In addition, we will perform a systematic mechanistic analysis of 4 additional deubiquitinating enzymes we have already validated as being required for the checkpoint.
In Aim 2, we propose to validate and analyze candidate genes from a recently performed RNAi screen to identify UPP genes involved in the response of cells to ionizing radiation.
In Aim 3, we will systematically analyze the role of the UPP in cell proliferation using new barcode-based shRNA screening capabilities coupled with high throughput flow cytometry.
In Aim 4, we continue to develop a general solutions to the problem of finding substrates for E3s. We have devised a novel flow-cytometry based system that allows degradation substrates for particular E3s to be identified using microarray hybridization and can also be used to identify proteins whose abundance is altered in response to a particular stimulus.

Agency
National Institute of Health (NIH)
Institute
National Institute on Aging (NIA)
Type
Research Project (R01)
Project #
5R01AG011085-17
Application #
7795814
Study Section
Special Emphasis Panel (ZRG1-CSRS-N (01))
Program Officer
Velazquez, Jose M
Project Start
1997-04-01
Project End
2013-01-31
Budget Start
2010-02-15
Budget End
2011-01-31
Support Year
17
Fiscal Year
2010
Total Cost
$431,732
Indirect Cost
Name
Harvard University
Department
Pathology
Type
Schools of Medicine
DUNS #
047006379
City
Boston
State
MA
Country
United States
Zip Code
02115
Gu, Xin; Orozco, Jose M; Saxton, Robert A et al. (2017) SAMTOR is an S-adenosylmethionine sensor for the mTORC1 pathway. Science 358:813-818
Mohideen, Firaz; Paulo, Joao A; Ordureau, Alban et al. (2017) Quantitative Phospho-proteomic Analysis of TNF?/NF?B Signaling Reveals a Role for RIPK1 Phosphorylation in Suppressing Necrotic Cell Death. Mol Cell Proteomics 16:1200-1216
Scott, Daniel C; Hammill, Jared T; Min, Jaeki et al. (2017) Blocking an N-terminal acetylation-dependent protein interaction inhibits an E3 ligase. Nat Chem Biol 13:850-857
Wang, Bin; Jie, Zuliang; Joo, Donghyun et al. (2017) TRAF2 and OTUD7B govern a ubiquitin-dependent switch that regulates mTORC2 signalling. Nature 545:365-369
Liu, Lijun; Michowski, Wojciech; Inuzuka, Hiroyuki et al. (2017) G1 cyclins link proliferation, pluripotency and differentiation of embryonic stem cells. Nat Cell Biol 19:177-188
Borkent, Marti; Bennett, Brian D; Lackford, Brad et al. (2016) A Serial shRNA Screen for Roadblocks to Reprogramming Identifies the Protein Modifier SUMO2. Stem Cell Reports 6:704-716
Harper, J Wade; Bennett, Eric J (2016) Proteome complexity and the forces that drive proteome imbalance. Nature 537:328-38
Brown, Nicholas G; VanderLinden, Ryan; Watson, Edmond R et al. (2016) Dual RING E3 Architectures Regulate Multiubiquitination and Ubiquitin Chain Elongation by APC/C. Cell 165:1440-1453
Zhou, Chunshui; Elia, Andrew E H; Naylor, Maria L et al. (2016) Profiling DNA damage-induced phosphorylation in budding yeast reveals diverse signaling networks. Proc Natl Acad Sci U S A 113:E3667-75
Scott, Daniel C; Rhee, David Y; Duda, David M et al. (2016) Two Distinct Types of E3 Ligases Work in Unison to Regulate Substrate Ubiquitylation. Cell 166:1198-1214.e24

Showing the most recent 10 out of 128 publications