Type 2 diabetes mellitus (T2DM) is one of the most common chronic diseases in the elderly affecting approximately 23% of Americans 60 years of age and older. Estimates of the total economic burden of T2DM exceed $100 billion/year, of which a major proportion can be attributed to persons in this age group. It is well established that insulin resistance plays a major role in the pathogenesis of T2DM associated with aging but the mechanisms responsible for its development remain poorly understood. In this regard recent multinuclear (1H/13C) magnetic resonance spectroscopy (MRS) studies by our group have demonstrated reduced basal mitochondrial function in skeletal muscle associated with increased intramyocellular and hepatic triglyceride content and insulin resistance in healthy, lean, elderly individuals. This led us to hypothesize that reduced mitochondrial function associated with aging leads to reduced fat oxidation predisposing these individuals to increases in intramyocellular and intrahepatic lipid content leading to defects in insulin signaling and insulin resistance. The studies proposed in this grant will build on these novel findings to further explore the potential role of altered muscle mitochondrial function in the pathogenesis of insulin resistance and T2DM in the elderly as well as the potential role of skeletal muscle insulin resistance in predisposing these individuals to increased hepatic de novo lipogenesis resulting in atherogenic dyslipidemia, non alcoholic fatty liver disease (NAFLD), and the metabolic syndrome. Specifically, we will apply state-of-the-art 1H/13C MRS techniques in combination with newly developed liquid chromatography tandem mass spectrometry methods to examine: 1) the impact of aging on insulin-stimulated mitochondrial function, 2) the role of skeletal muscle insulin resistance in the elderly in promoting increased hepatic de novo lipogenesis, 3) the impact of aging on the relative contributions of basal and insulin stimulated muscle mitochondrial glucose and fat oxidation in muscle biopsies, and 4) development and test of novel 13C MRS techniques to non-invasively determine the effects of aging on basal and insulin stimulated relative contributions of muscle mitochondrial glucose and fat oxidation in muscle.

Public Health Relevance

Type 2 diabetes mellitus (T2DM) is one of the most common chronic diseases in older adulthood and estimates of the total economic burden of T2DM exceed $130 billion/year. The studies proposed in this grant will build on our recent observations demonstrating a potential role of altered mitochondrial function in the pathogenesis of insulin resistance and T2DM in the elderly as well as the potential role of skeletal muscle insulin resistance predisposing these individuals to atherogenic dyslipidemia. It is anticipated that the results from these patient-oriented hypothesis-driven studies will provide important new insights into the pathogenesis of insulin resistance and atherogenic dyslipidemia associated with aging and provide new targets to prevent T2DM and promote healthy aging.

Agency
National Institute of Health (NIH)
Institute
National Institute on Aging (NIA)
Type
Research Project (R01)
Project #
5R01AG023686-09
Application #
8432020
Study Section
Clinical and Integrative Diabetes and Obesity Study Section (CIDO)
Program Officer
Dutta, Chhanda
Project Start
2003-09-30
Project End
2015-02-28
Budget Start
2013-04-15
Budget End
2014-02-28
Support Year
9
Fiscal Year
2013
Total Cost
$308,174
Indirect Cost
$121,966
Name
Yale University
Department
Internal Medicine/Medicine
Type
Schools of Medicine
DUNS #
043207562
City
New Haven
State
CT
Country
United States
Zip Code
06520
Perry, Rachel J; Petersen, Kitt Falk; Shulman, Gerald I (2016) Pleotropic effects of leptin to reverse insulin resistance and diabetic ketoacidosis. Diabetologia 59:933-7
Perry, Rachel J; Borders, Candace B; Cline, Gary W et al. (2016) Propionate Increases Hepatic Pyruvate Cycling and Anaplerosis and Alters Mitochondrial Metabolism. J Biol Chem 291:12161-70
Pesta, Dominik H; Tsirigotis, Dimitrios N; Befroy, Douglas E et al. (2016) Hypophosphatemia promotes lower rates of muscle ATP synthesis. FASEB J 30:3378-3387
Popov, Violeta B; Jornayvaz, Francois R; Akgul, Emin O et al. (2016) Second-generation antisense oligonucleotides against β-catenin protect mice against diet-induced hepatic steatosis and hepatic and peripheral insulin resistance. FASEB J 30:1207-17
Camporez, João-Paulo G; Petersen, Max C; Abudukadier, Abulizi et al. (2016) Anti-myostatin antibody increases muscle mass and strength and improves insulin sensitivity in old mice. Proc Natl Acad Sci U S A 113:2212-7
Perry, Rachel J; Peng, Liang; Barry, Natasha A et al. (2016) Acetate mediates a microbiome-brain-β-cell axis to promote metabolic syndrome. Nature 534:213-7
Petersen, Kitt Falk; Befroy, Douglas E; Dufour, Sylvie et al. (2016) Assessment of Hepatic Mitochondrial Oxidation and Pyruvate Cycling in NAFLD by (13)C Magnetic Resonance Spectroscopy. Cell Metab 24:167-71
Petersen, Kitt Falk; Morino, Katsutaro; Alves, Tiago C et al. (2015) Effect of aging on muscle mitochondrial substrate utilization in humans. Proc Natl Acad Sci U S A 112:11330-4
Camporez, João Paulo G; Kanda, Shoichi; Petersen, Max C et al. (2015) ApoA5 knockdown improves whole-body insulin sensitivity in high-fat-fed mice by reducing ectopic lipid content. J Lipid Res 56:526-36
Perry, Rachel J; Camporez, João-Paulo G; Kursawe, Romy et al. (2015) Hepatic acetyl CoA links adipose tissue inflammation to hepatic insulin resistance and type 2 diabetes. Cell 160:745-58

Showing the most recent 10 out of 52 publications