Work, from our lab and others, has established that the beneficial, anti-cancer function of the p16INK4a tumor suppressor mechanism also untowardly contributes to mammalian aging. In this model, the age-associated expression of p16INK4a compromises organismal fitness by limiting the regeneration and repair of certain self-renewing compartments. In support of this hypothesis, recent data from our lab and collaborators has shown that p16INK4a-deficient animals demonstrate a resistance to certain aging phenotypes in pancreatic -cells, neural stem cells and hematopoietic stem cells, while transgenic animals expressing excess p16INK4a demonstrate an accelerated functional decline with aging in these compartments. Additional support for this model has come from recent human genome-wide and candidate association studies which have linked single nucleotide polymorphisms near the CDKN2a locus, which encodes p16INK4a, to human age-associated conditions such as frailty, type 2 diabetes and atherosclerotic disease (myocardial infarction, ischemic stroke and abdominal aortic aneurysm). In the renewal of this proposal, we seek to extend these prior observations to further enhance our understanding of how p16INK4a influences mammalian aging.
In specific aim I, we propose to further define the role of p16INK4a in pancreatic -cell aging using a novel p16INK4a-conditional allele generated in our lab.
In specific aim II, we will further study the role of p16INK4a in a murine model of atherosclerosis using germline and conditional p16INK4a-deficient mice.
In specific aims III and IV, we will focus on the role of p16INK4a in lymphocyte aging.
In aim III, we will characterize T- and B-cell number and function in mice harboring somatic inactivation of p16INK4a in these tissues.
In aim I V, we will study the expression of p16INK4a in human T-cells with aging and after exposure to age-promoting stimuli such as cytotoxic chemotherapy. Through these approaches, we will further delineate the contribution of p16INK4a to age-associated phenotypes such as type 2 diabetes, atherosclerosis and immune dysfunction in humans in mice.

Public Health Relevance

Some aspects of aging result from a decline in the ability of tissues to repair and regenerate. This decline in tissue regenerative capacity is in part caused, in some cell types, by activation of the cell's intrinsic anti-cancer machinery. Human genetic studies have suggested this process is of particular importance in aging-related diseases such as atherosclerosis and type 2 diabetes. In this work, we use experimental systems in humans and mice to investigate the role of anti-cancer mechanisms in aging.

National Institute of Health (NIH)
National Institute on Aging (NIA)
Research Project (R01)
Project #
Application #
Study Section
Development - 2 Study Section (DEV2)
Program Officer
Velazquez, Jose M
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
University of North Carolina Chapel Hill
Internal Medicine/Medicine
Schools of Medicine
Chapel Hill
United States
Zip Code
Jeck, William R; Sharpless, Norman E (2014) Detecting and characterizing circular RNAs. Nat Biotechnol 32:453-61
Sanoff, Hanna K; Deal, Allison M; Krishnamurthy, Janakiraman et al. (2014) Effect of cytotoxic chemotherapy on markers of molecular age in patients with breast cancer. J Natl Cancer Inst 106:dju057
Sorrentino, Jessica A; Sanoff, Hanna K; Sharpless, Norman E (2014) Defining the toxicology of aging. Trends Mol Med 20:375-84
Wang, Yang; Sharpless, Norman; Chang, Sandy (2013) p16(INK4a) protects against dysfunctional telomere-induced ATR-dependent DNA damage responses. J Clin Invest 123:4489-501
Burd, Christin E; Sorrentino, Jessica A; Clark, Kelly S et al. (2013) Monitoring tumorigenesis and senescence in vivo with a p16(INK4a)-luciferase model. Cell 152:340-51
Jeck, William R; Sorrentino, Jessica A; Wang, Kai et al. (2013) Circular RNAs are abundant, conserved, and associated with ALU repeats. RNA 19:141-57
Roberts, Patrick J; Bisi, John E; Strum, Jay C et al. (2012) Multiple roles of cyclin-dependent kinase 4/6 inhibitors in cancer therapy. J Natl Cancer Inst 104:476-87
Wu, Congying; Asokan, Sreeja B; Berginski, Matthew E et al. (2012) Arp2/3 is critical for lamellipodia and response to extracellular matrix cues but is dispensable for chemotaxis. Cell 148:973-87
Cardenas, Jessica C; Owens 3rd, A Phillip; Krishnamurthy, Janakiraman et al. (2011) Overexpression of the cell cycle inhibitor p16INK4a promotes a prothrombotic phenotype following vascular injury in mice. Arterioscler Thromb Vasc Biol 31:827-33
Kuo, Chao-Ling; Murphy, Andrew J; Sayers, Scott et al. (2011) Cdkn2a is an atherosclerosis modifier locus that regulates monocyte/macrophage proliferation. Arterioscler Thromb Vasc Biol 31:2483-92

Showing the most recent 10 out of 25 publications