The neurovascular hypothesis states that an impaired brain-to-blood efflux of amyloid ? protein (ABP) at the vascular blood-brain barrier (BBB) is an important mechanism underlying ABP accumulation and cognitive impairments in patients with Alzheimer's disease (AD). Low-density lipoprotein receptor-related protein-1 (LRP) has been identified as the major efflux pump at the BBB for ABP. Zlokovic and co-workers have shown that LRP is deficient in the BBB of patients with AD and of Hsiao mice that overexpress amyloid precursor peptide (APP). We have shown that ABP efflux is impaired at the BBB in animals which overexpress ABP and that knockdown of APP expression with antisense restores BBB efflux of ABP. This suggests that ABP poisons its own transporter, LRP. Our goal is to determine whether the mechanism of impaired efflux of ABP is caused by ABP-induced oxidative damage to LRP. ABP, especially in its oligomeric form, induces oxidative stress and by this mechanism impairs the function of transporters other than LRP in non-BBB tissues. LRP in non-BBB tissues is already known to be readily oxidized and its ability to transport its other ligands in those tissues is impaired in its oxidative state. Our hypothesis is that ABP impairs its own efflux at the BBB by oxidizing LRP. We will test this hypothesis in 3 Specific Aims:
Specific Aim 1 : To determine in vivo whether mice that do overexpress APP have an oxidized LRP and whether ABP efflux can be restored to normal rates by treatments which reduce ABP or by antioxidants.
Specific Aim 2 : To determine the role of ABP and oxidation in impairing BBB efflux of ABP in vitro in a BBB monolayer model that uses brain endothelial cells derived from mice that do not overexpress APP.
Specific Aim 3 : To determine the status of oxidative modification of LRP in human brain tissue obtained at short post mortem intervals (PMI;specifically, <4h after death) from patients with AD and mild cognitive impairment (MCI) relative to that from control brain tissue and correlate this information to the level and oligomeric status of ABP1-42 in those same brains and to compare this to a similar analysis for the mice that overepress APP.

National Institute of Health (NIH)
National Institute on Aging (NIA)
Research Project (R01)
Project #
Application #
Study Section
Brain Injury and Neurovascular Pathologies Study Section (BINP)
Program Officer
Petanceska, Suzana
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
Seattle Institute for Biomedical/Clinical Research
United States
Zip Code
Hong, Suzi; Banks, William A (2015) Role of the immune system in HIV-associated neuroinflammation and neurocognitive implications. Brain Behav Immun 45:12-Jan
Banks, W A (2015) The blood-brain barrier in neuroimmunology: Tales of separation and assimilation. Brain Behav Immun 44:8-Jan
Dohi, Kenji; Kraemer, Brian C; Erickson, Michelle A et al. (2014) Molecular hydrogen in drinking water protects against neurodegenerative changes induced by traumatic brain injury. PLoS One 9:e108034
Sui, Yu-Ting; Bullock, Kristin M; Erickson, Michelle A et al. (2014) Alpha synuclein is transported into and out of the brain by the blood-brain barrier. Peptides 62:197-202
Erickson, Michelle A; Morofuji, Yoichi; Owen, Joshua B et al. (2014) Rapid transport of CCL11 across the blood-brain barrier: regional variation and importance of blood cells. J Pharmacol Exp Ther 349:497-507
Farr, Susan A; Erickson, Michelle A; Niehoff, Michael L et al. (2014) Central and peripheral administration of antisense oligonucleotide targeting amyloid-? protein precursor improves learning and memory and reduces neuroinflammatory cytokines in Tg2576 (A?PPswe) mice. J Alzheimers Dis 40:1005-16
Armbrecht, Harvey J; Siddiqui, Akbar M; Green, Michael et al. (2014) SAMP8 mice have altered hippocampal gene expression in long term potentiation, phosphatidylinositol signaling, and endocytosis pathways. Neurobiol Aging 35:159-68
Salameh, Therese S; Banks, William A (2014) Delivery of therapeutic peptides and proteins to the CNS. Adv Pharmacol 71:277-99
Rhodehouse, Bryce C; Erickson, Michelle A; Banks, William A et al. (2013) Hyperhomocysteinemic mice show cognitive impairment without features of Alzheimer's disease phenotype. J Alzheimers Dis 35:59-66
Sultana, Rukhsana; Perluigi, Marzia; Allan Butterfield, D (2013) Lipid peroxidation triggers neurodegeneration: a redox proteomics view into the Alzheimer disease brain. Free Radic Biol Med 62:157-69

Showing the most recent 10 out of 49 publications