Previous studies have provided compelling evidence that the Growth Hormone (GH)-IGF-1 axis is a conserved pathway important for determination of both healthspan and lifespan in diverse organisms. Data from several rodent models indicate that lifelong deficiency of GH and/or IGF-1 or perturbations that suppress their signaling pathways result in increased lifespan, reduced age-related pathologies and beneficial effects on cardiac and cognitive function. Nevertheless, the concept that reduced levels or signaling of these hormones are beneficial for the aging organism remains controversial since there are numerous studies that have reported beneficial effects of GH and/or IGF-1 replacement on the aging cardiovascular system and an overwhelming database indicating beneficial effects of these hormones on the aging brain. The question of whether reduced GH and IGF-1 levels are directly associated with increased longevity and whether GH and/or IGF-1 replacement have beneficial effects on individual organ systems (e.g. healthspan) remains a seminal question in the field of biogerontology. This controversy will continue until appropriate and translationally relevant animal models that can be used to regulate GH and IGF-1 levels throughout the lifespan are available. The necessity of new models for advancement of the field has been recognized by us and our colleagues in recent consensus reports. The proposed experiments are in response to PA-10-014 (Development and Characterization of Animal Models for Aging Research) and our goal is to conduct translationally relevant studies as well as basic lifespan, metabolic, behavioral and pathological analyses to address the hypothesis that deficiencies of hepatic IGF-1 initiated at different stages of the lifespan have unique effects on survival, end-of life pathology and metabolic parameters. The following specific aims are proposed: 1) Analyze the effects of hepatic IGF-1 deficiency initiated peri-natally by crossing alb-cretg/+ and igff/f mice or post-natally at 30 days, 6 or 16 months by injecting the igff/f mouse with MUP-iCre-AAV8 or control vector and assessing effects on lifespan and end-of-life pathology. 2) Determine the effects of hepatic IGF-1 deficiency initiated peri-natally or at 30 days, 6 or 16 months of age on a) accumulation of age-related pathological changes using a cross-sectional design, b) paracrine IGF-1 gene and protein expression, c) circulating hormone levels (thyroxine, leptin, insulin and glucose) as well as whole body insulin action, glucose production and rates of glucose utilization in individual tissues, d) kidney and liver function, as well as e) basic measures of food/water consumption, activity and lean/fat mass. Effects of IGF-1 deficiency on these endpoints will be assessed at 6, 16 and 26 months of age. 3) Assess whether hepatic IGF-1 deficiency initiated peri-natally or at 30 days, 6 or 16 months influences cellular redox homeostasis and inflammatory processes in vasculature, heart, liver, brain, muscle and kidney during aging. The studies presented are designed to produce one of the most comprehensive and rigorous analyses of the effects of IGF-1 deficiency on pathology and lifespan using a pre-clinical, translationally relevant approach.

Public Health Relevance

Previous studies have provided compelling evidence that the Growth Hormone (GH)-IGF-1 axis is a conserved pathway important for determination of both healthspan and lifespan in diverse organisms. Nevertheless, controversies related to the effects of these hormones remain and will continue until appropriate and translationally relevant animal models that can be used to regulate GH and IGF-1 levels throughout the lifespan are available. The necessity of new models for advancement of the field has been recognized by us and our colleagues in recent consensus reports. The studies presented in this application use novel animal models and interventions that are designed to produce one of the most comprehensive and rigorous analyses of the effects of IGF-1 deficiency on pathology and lifespan using a pre-clinical, translationally relevant approach.

Agency
National Institute of Health (NIH)
Institute
National Institute on Aging (NIA)
Type
Research Project (R01)
Project #
5R01AG038747-04
Application #
8643191
Study Section
Cellular Mechanisms in Aging and Development Study Section (CMAD)
Program Officer
Finkelstein, David B
Project Start
2011-03-01
Project End
2016-02-29
Budget Start
2014-03-01
Budget End
2015-02-28
Support Year
4
Fiscal Year
2014
Total Cost
$492,047
Indirect Cost
$123,857
Name
University of Oklahoma Health Sciences Center
Department
Other Health Professions
Type
Schools of Medicine
DUNS #
878648294
City
Oklahoma City
State
OK
Country
United States
Zip Code
73117
Tucsek, Zsuzsanna; Noa Valcarcel-Ares, M; Tarantini, Stefano et al. (2017) Hypertension-induced synapse loss and impairment in synaptic plasticity in the mouse hippocampus mimics the aging phenotype: implications for the pathogenesis of vascular cognitive impairment. Geroscience :
Podlutsky, Andrej; Valcarcel-Ares, Marta Noa; Yancey, Krysta et al. (2017) The GH/IGF-1 axis in a critical period early in life determines cellular DNA repair capacity by altering transcriptional regulation of DNA repair-related genes: implications for the developmental origins of cancer. Geroscience 39:147-160
Ungvari, Zoltan; Valcarcel-Ares, Marta Noa; Tarantini, Stefano et al. (2017) Connective tissue growth factor (CTGF) in age-related vascular pathologies. Geroscience 39:491-498
Ashpole, Nicole M; Logan, Sreemathi; Yabluchanskiy, Andriy et al. (2017) IGF-1 has sexually dimorphic, pleiotropic, and time-dependent effects on healthspan, pathology, and lifespan. Geroscience 39:129-145
Mangold, Colleen A; Masser, Dustin R; Stanford, David R et al. (2017) CNS-wide Sexually Dimorphic Induction of the Major Histocompatibility Complex 1 Pathway With Aging. J Gerontol A Biol Sci Med Sci 72:16-29
Tarantini, Stefano; Tran, Cam Ha T; Gordon, Grant R et al. (2017) Impaired neurovascular coupling in aging and Alzheimer's disease: Contribution of astrocyte dysfunction and endothelial impairment to cognitive decline. Exp Gerontol 94:52-58
Tarantini, Stefano; Valcarcel-Ares, Noa M; Yabluchanskiy, Andriy et al. (2017) Insulin-like growth factor 1 deficiency exacerbates hypertension-induced cerebral microhemorrhages in mice, mimicking the aging phenotype. Aging Cell 16:469-479
Tarantini, Stefano; Fulop, Gabor A; Kiss, Tamas et al. (2017) Demonstration of impaired neurovascular coupling responses in TG2576 mouse model of Alzheimer's disease using functional laser speckle contrast imaging. Geroscience :
Gardner, Andrew W; Montgomery, Polly S; Zhao, Yan D et al. (2017) Association between daily walking and antioxidant capacity in patients with symptomatic peripheral artery disease. J Vasc Surg 65:1762-1768
Tarantini, Stefano; Yabluchanksiy, Andriy; Fülöp, Gábor A et al. (2017) Pharmacologically induced impairment of neurovascular coupling responses alters gait coordination in mice. Geroscience 39:601-614

Showing the most recent 10 out of 71 publications