Stroke is the leading cause of disability in the US and with heart disease, the leading cause of death. The risk for stroke with consequent functional disability is increased with age, and in women this risk is elevated after the menopause. Paradoxically, hormone therapy at menopause increases the risk for stroke. Animal models of stroke confirm that stroke severity is worse in aged animals as compared to younger animals. In middle age, our recent data shows that female rats sustain a greater degree of tissue damage in the cortex and striatum as compared to younger females. Middle aged males, on the other hand, do not differ significantly from younger males in the extent of cortical infarction. This age difference in cortical cell loss is also paralleled by functional changes in astrocytes, a specific brain support cell. Astrocytes play a key role in normal and pathological conditions. Following stroke, astrocytes are rapidly mobilized to the peri-infarct area, detoxify the injured brain via glutamate uptake and fluid efflux and secrete growth factors known to promote angiogenesis and neuronal survival and neurogenesis. Astrocytes culled from the ischemic cortex of middle aged female rats show profound loss of protective functions including a reduced ability to sequester glutamate, decreased growth factor release, increased release of chemokines and increased ability to recruit leukocytes. These changes are consistent with increased infarct volume observed in older females. Hence in this proposal we will determine age and sex-specific epigenomic changes in astrocytes obtained from the ischemic cortex, to determine critical translational and transcriptional modulators.
In Specific Aim 1 we will determine age-related changes in the expression of small non-coding RNA. MicroRNA, a key translation regulatory element, regulates large gene networks, and have been shown to play a central role in cell senescence and injury (stroke).
In Specific Aim 2 we will determine age-related changes in DNA and histone methlyation patterns. Methylation patterns of specific leucines associated with activation (H3K4me3 and H3K9ac) or repression (H3K9me3 and H3K27me3) of gene transcription will be targeted. These complementary approaches will allow us to develop a molecular fingerprint of the aging astrocyte. Finally, in Specific Aim 3, select molecular targets will be manipulated using (1) miRNA mimetics or antagomirs and (2) demethylases to reverse age-specific patterns in astrocytes. Data gathered from these studies is expected to aid in the eventual identification of epigenomic changes that predict disease severity and facilitate discovery of therapeutic targets.

Public Health Relevance

The risk and disability associated with stroke increases with age. In order to develop more effective therapies for this disease, this application will focus on age-related changes in a specific brain cell called the astrocyte. Our studies using an animal model show that middle-aged females sustain more brain damage after stroke than younger females and this is associated with functional changes in the neuroprotective ability of astrocytes. We will seek to understand global age-related changes in this cell type so as to develop markers for disease severity as well as new therapeutic targets.

National Institute of Health (NIH)
National Institute on Aging (NIA)
Research Project (R01)
Project #
Application #
Study Section
Special Emphasis Panel (ZRG1-GGG-M (51))
Program Officer
Petanceska, Suzana
Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
Texas A&M University
Anatomy/Cell Biology
Schools of Medicine
College Station
United States
Zip Code
Park, Min Jung; Sohrabji, Farida (2016) The histone deacetylase inhibitor, sodium butyrate, exhibits neuroprotective effects for ischemic stroke in middle-aged female rats. J Neuroinflammation 13:300
Selvamani, Amutha; Sohrabji, Farida (2016) Mir363-3p improves ischemic stroke outcomes in female but not male rats. Neurochem Int :
Galea, Liisa A M; Frick, Karyn M; Hampson, Elizabeth et al. (2016) Why estrogens matter for behavior and brain health. Neurosci Biobehav Rev :
Sohrabji, Farida (2015) Estrogen-IGF-1 interactions in neuroprotection: ischemic stroke as a case study. Front Neuroendocrinol 36:1-14
Chisholm, Nioka C; Henderson, Michael L; Selvamani, Amutha et al. (2015) Histone methylation patterns in astrocytes are influenced by age following ischemia. Epigenetics 10:142-52
Selvamani, Amutha; Williams, Madison H; Miranda, Rajesh C et al. (2014) Circulating miRNA profiles provide a biomarker for severity of stroke outcomes associated with age and sex in a rat model. Clin Sci (Lond) 127:77-89
Sohrabji, F; Williams, M (2013) Stroke neuroprotection: oestrogen and insulin-like growth factor-1 interactions and the role of microglia. J Neuroendocrinol 25:1173-81
Sohrabji, Farida; Selvamani, Amutha; Balden, Robyn (2013) Revisiting the timing hypothesis: biomarkers that define the therapeutic window of estrogen for stroke. Horm Behav 63:222-30
Sohrabji, Farida; Bake, Shameena; Lewis, Danielle K (2013) Age-related changes in brain support cells: Implications for stroke severity. Neurochem Int 63:291-301
Lewis, Danielle K; Thomas, Kristen T; Selvamani, Amutha et al. (2012) Age-related severity of focal ischemia in female rats is associated with impaired astrocyte function. Neurobiol Aging 33:1123.e1-16